Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins.
نویسندگان
چکیده
Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.
منابع مشابه
A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening.
Optimization of membrane protein stability under different solution conditions is essential for obtaining crystals that diffract to high resolution. Traditional methods that evaluate protein stability require large amounts of material and are, therefore, ill suited for medium- to high-throughput screening of membrane proteins. Here we present a rapid and efficient fluorescence-detection size-ex...
متن کاملFluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins
Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-s...
متن کاملOrganic matter from biofilter nitrification by high performance size exclusion chromatography and fluorescence excitation-emission matrix
A combination of high performance size exclusion chromatography with organic carbon detector and ultraviolet detector coupled with peak-fitting technique and fluorescence excitation-emission matrix spectrometry applied fluorescence regional integration method was conducted to determine the characteristics of organic matter during nitrification. The batch scale of bionet nitrification without or...
متن کاملGreen Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluor...
متن کاملAn efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability.
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2006