Nonparametric Estimation for Func- Tional Data by Wavelet Thresholding

نویسندگان

  • Christophe Chesneau
  • Maher Kachour
  • Bertrand Maillot
چکیده

This paper deals with density and regression estimation problems for functional data. Using wavelet bases for Hilbert spaces of functions, we develop a new adaptive procedure based on wavelet thresholding. We provide theoretical results on its asymptotic performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonparametric Regression Spectrum : Estimation, Asymptotic Properties and Data Analysis

Classical spectral analysis in statistics considers decomposition of stationary time series into sinusoidal components. The autocovariance and the spectrum are fundamental elements for analyzing a given time series both in time and frequency domain. However, in practice one frequently observes nonstationary time series. In order to apply spectral analysis to these processes, an extension of the...

متن کامل

The Root-Unroot Algorithm for Density Estimation as Implemented via Wavelet Block Thresholding

We propose and implement a density estimation procedure which begins by turning density estimation into a nonparametric regression problem. This regression problem is created by binning the original observations into many small size bins, and by then applying a suitable form of root transformation to the binned data counts. In principle many common nonparametric regression estimators could then...

متن کامل

Adaptive Variance Function Estimation in Heteroscedastic Nonparametric Regression

We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. Th...

متن کامل

Wavelet thresholding techniques for power spectrum estimation

Estimation of the power spectrum S( f ) of a stationary random process can be viewed as a nonparametric statistical estimation problem. We introduce a nonparametric approach based on a wavelet representation for the logarithm of the unknown S( f ). This approach offers the ability to capture statistically significant components of lnS( f ) at different resolution levels and guarantees nonnegati...

متن کامل

Data-driven wavelet-Fisz methodology for nonparametric function estimation

We propose a wavelet-based technique for the nonparametric estimation of functions contaminated with noise whose mean and variance are linked via a possibly unknown variance function. Our method, termed the data-driven wavelet-Fisz technique, consists of estimating the variance function via a Nadaraya-Watson estimator, and then performing a wavelet thresholding procedure which uses the estimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012