In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles
نویسندگان
چکیده
BACKGROUND 5-Aminolevulinic acid (ALA) is a prodrug for topical photodynamic therapy. The effectiveness of topical ALA can be limited by its bioavailability. The aim of this study was to develop a novel ALA delivery approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). METHODS A modified double emulsion solvent evaporation method was used to prepare ALA loaded PLGA NPs (ALA PLGA NPs). The characteristics, uptake, protoporphyrin IX fluorescence kinetics, and cytotoxicity of ALA PLGA NPs toward a human skin squamous cell carcinoma cell line were examined. RESULTS The mean particle size of spherical ALA PLGA NPs was 65.6 nm±26 nm with a polydispersity index of 0.62. The encapsulation efficiency was 65.8%±7.2% and ALA loading capacity was 0.62%±0.27%. When ALA was dispersed in PLGA NPs, it turned into an amorphous phase. ALA PLGA NPs could be taken up by squamous cell carcinoma cells and localized in the cytoplasm. The protoporphyrin IX fluorescence kinetics and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay showed that ALA PLGA NPs were more effective than free ALA of the same concentration. CONCLUSION PLGA NPs provide a promising ALA delivery strategy for topical ALA-photodynamic therapy of skin squamous cell carcinoma.
منابع مشابه
Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model
BACKGROUND Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. MATERIALS AND METHODS Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylact...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملEffect of Silver Nanoparticles on Improving the Efficacy of 5-Aminolevulinic Acid-Induced Photodynamic Therapy
Introduction: The most important limitation of 5-aminolevulinic acid (5-ALA)-induced photodynamic therapy (PDT) is the efficacy of the cells in converting 5-ALA to protoporphyrin IX. The present study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) with the photosensitivity at the surface plasmon resonance wavelength on 5-ALA-mediated PDT. Material and Methods: First of a...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملSynergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells
Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...
متن کامل