Ion concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film.
نویسندگان
چکیده
We describe a novel and simple mechanism for inducing ion concentration polarization (ICP) using a surface-patterned perm-selective nanoporous film like Nafion in single, open microchannels. Such a surface-patterned Nafion film can rapidly transport only cations from the anodic side to the cathodic side through the nanopore clusters so that it is possible to generate an ICP phenomenon near the Nafion film. In this work, we characterize transport phenomena and distributions of ion concentration under various electric fields near the Nafion film and show that single-channel based ICP (SC-ICP) is affected by Nafion film thicknesses, strengths of applied electric fields, and ionic strengths of buffer solutions. We also emphasize that SC-ICP devices have several advantages over previous dual-channel ICP (DC-ICP) devices: easy and simple fabrication processes, inherently leak-tight, simple experimental setup requiring only one pair of electrodes, stable and robust ICP induced rapidly, and low electrical resistances helping to avoid Joule heating, and membrane perm-selectivity breakdown but allowing as high bulk flow as an open, plain microchannel. As an example of applications, we demonstrate that SC-ICP devices not only have high potential in pre-concentrating proteins in massively parallel microchannels but also enable the concentration and lysis of bacterial cells simultaneously and continuously on a chip; therefore, proteins within the cells are extracted, separated from the concentrated cells and then pre-concentrated at a different location that is closer to the Nafion film. Hence, we believe that the SC-ICP devices have higher possibilities of being easily integrated with traditional microfluidic systems for analytical and biotechnological applications.
منابع مشابه
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel.
A perm-selective nanochannel could initiate concentration polarization near the nanochannel, significantly decreasing (increasing) the ion concentration in the anodic (cathodic) end of the nanochannel. Such strong concentration polarization can be induced even at moderate buffer concentrations because of local ion depletion (therefore thicker local Debye layer) near the nanochannel. In addition...
متن کاملFabrication of large-area patterned nanostructures for optical applications by nanoskiving.
Cost-effective and convenient methods for fabrication of patterned metallic nanostructures over the large (mm2) areas required for applications in photonics are much needed. In this paper, we demonstrate the fabrication of arrays of closed and open, loop-shaped nanostructures by a technique (nanoskiving) that combines thin-film deposition by metal evaporation with thin-film sectioning. These ar...
متن کاملThe Effect of Chloride Ions Concentration on the Electrochemical Behavior of AISI 410 Stainless Steels in Simulated Concrete Pore Solution
The effect of chloride ions concentration on the electrochemical behavior of AISI 410 stainless steel in the simulated concrete pore (0.1 M NaOH + 0.1 M KOH) solution was investigated by various electrochemical methods such as Potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves revealed that increasing chlori...
متن کاملAdjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کاملModeling of Nanofiltration of Low Concentration Pb(II) Aqueous Solutions Using a Coupled Concentration Polarization and Pore Flow Model
In this paper, the performance of nanofiltration membrane process in removing Pb(II) from aqueous solution was modeled by the pore flow-concentration polarization model. The model was fabricated based on the simultaneous resolving of Extended Nernst–Planck equation(ENP), film theory, and osmotic pressure model. The effects of various operational parameters such as the applied pressure, feed con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 5 شماره
صفحات -
تاریخ انتشار 2013