Detection and Imaging in Strongly Backscattering Randomly Layered Media

نویسنده

  • R. ALONSO
چکیده

Echoes from small reflectors buried in heavy clutter are weak and difficult to distinguish from the medium backscatter. Detection and imaging with sensor arrays in such media requires filtering out the unwanted backscatter and enhancing the echoes from the reflectors that we wish to locate. We consider a filtering and detection approach based on the singular value decomposition of the local cosine transform of the array response matrix. The algorithm is general and can be used for detection and imaging in heavy clutter, but its analysis depends on the model of the cluttered medium. This paper is concerned with the analysis of the algorithm in finely layered random media. We obtain a detailed characterization of the singular values of the transformed array response matrix and justify the systematic approach of the filtering algorithm for detecting and refining the time windows that contain the echoes that are useful in imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode...

متن کامل

Filtering Random Layering Effects in Imaging

Objects that are buried deep in heterogeneous media produce faint echoes which are difficult to distinguish from the backscattered field. Sensor array imaging in such media cannot work unless we filter out the backscattered echoes and enhance the coherent arrivals that carry information about the objects that we wish to image. We study such filters for imaging in strongly backscattering, finely...

متن کامل

Cloaking a Perfectly Conducting Sphere with Rotationally Uniaxial Nihility Media in Monostatic Radar System

In this paper, the backscattering properties of a perfect electric conducting sphere coated with layered anisotropic media whose constitutive parameters are close to nihility are investigated. We show that the backscattering is more sensitive to the radial constitutive parameters than to the tangential ones. Compared with isotropic case, the anisotropic media with small axial parameters have th...

متن کامل

Broadband enhanced backscattering spectroscopy of strongly scattering media.

We report on a new experimental method for enhanced backscattering spectroscopy (EBS) of strongly scattering media over a bandwidth from 530-1000 nm. The instrument consists of a supercontinuum light source and an angle-dependent detection system using a fiber-coupled grating spectrometer. Using a combination of two setups, the backscattered intensity is obtained over a large angular range and ...

متن کامل

Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction.

The properties of polarized light emerging from turbid media in the exact backscattering direction are studied by modulating the incident light polarization state and isolating the synchronous signal with lock-in amplifier detection. The results are reported for polystyrene microsphere suspensions in distilled water, with and without glucose, and for both ex vivo and in vivo biological tissues....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010