Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans.

نویسندگان

  • Jung-Mi Kim
  • Ling Lu
  • Rongzhong Shao
  • Jaclyn Chin
  • Bo Liu
چکیده

The kinase cascade of the septation initiation network (SIN), first revealed in fission yeast, activates the contraction of the actomyosin ring, and plays an essential role in fungal septation. Mob1p, an evolutionarily conserved SIN protein, is associated with the most downstream kinase of this cascade in fission yeast. In this study, the mobA gene encoding a homologous protein was isolated from the filamentous fungus Aspergillus nidulans, whose mycelium is made of multinucleate cells. The MOBA protein was required for septation and conidiation, but was not essential for hyphal extension and colony formation. To identify genes that act antagonistically against the SIN, UV mutagenesis was carried out to isolate suppressor (smo) mutations that restored conidiation when MOBA was not expressed. Microscopic examination indicated that the restored conidiation was concomitant with restored septation in the absence of the MOBA protein. Eight recessive smo mutations in five complementation groups also bypassed the requirement of the SIN kinases SEPH and SIDB for septum formation and conidiation. However, none of these smo mutations affected the localization of MOBA. Among smo mutations, smoA and smoB mutations caused reduced hyphal growth and colony formation. They also rendered hypersensitivity to low doses of the microtubule-depolymerizing agent benomyl for conidiation. Therefore, in A. nidulans, proteins encoded by the smo genes likely have an antagonistic interaction against the SIN pathway to regulate septation and conidiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans.

In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization...

متن کامل

Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway.

In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromoso...

متن کامل

Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans.

The ability of fungi to generate polarized cells with a variety of shapes likely reflects precise temporal and spatial control over the formation of polarity axes. The bud site selection system of Saccharomyces cerevisiae represents the best-understood example of such a morphogenetic regulatory system. However, the extent to which this system is conserved in the highly polarized filamentous fun...

متن کامل

Extragenic suppressors of the nimX2(cdc2) mutation of Aspergillus nidulans affect nuclear division, septation and conidiation.

The Aspergillus nidulans NIMX(CDC2) protein kinase has been shown to be required for both the G(2)/M and G(1)/S transitions, and recent evidence has implicated a role for NIMX(CDC2) in septation and conidiation. While much is understood of its G(2)/M function, little is known about the functions of NIMX(CDC2) during G(1)/S, septation, and conidiophore development. In an attempt to better unders...

متن کامل

Down-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans

Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2006