Neuronal damage in rat brain and spinal cord after cardiac arrest and massive hemorrhagic shock.

نویسندگان

  • Yoshifumi Kudo
  • Hirokazu Ohtaki
  • Kenji Dohi
  • Li Yin
  • Tomoya Nakamachi
  • Sakura Endo
  • Sachiko Yofu
  • Yutaka Hiraizumi
  • Hideyo Miyaoka
  • Seiji Shioda
چکیده

OBJECTIVE Severe global ischemia often results in severe damage to the central nervous system of survivors. Hind-limb paralysis is a common deficit caused by global ischemia. Until recently, most studies of global ischemia of the central nervous system have examined either the brain or spinal cord, but not both. Spinal cord damage specifically after global ischemia has not been studied in detail. Because the exact nature of the neuronal damage to the spinal cord and the differences in neuronal damage between the brain and spinal cord after global ischemia are poorly understood, we developed a new global ischemia model in the rat and specifically studied spinal cord damage after global ischemia. Further, we compared the different forms of neuronal damage between the brain and spinal cord after global ischemia. DESIGN Randomized, controlled study using three different global ischemia models in the rat. SETTING University research laboratory. SUBJECTS Male, adult Sprague-Dawley rats (300 g). INTERVENTIONS Animals were divided into three experimental groups, group A (n = 6, survived for 7 days), 12 mins of hemorrhagic shock; group B (n = 6, survived for 7 days), 5 mins of cardiac arrest; or group C (n = 6, each for 6 hrs, 12 hrs, 1 day, 3 days, and 7 days), 7 mins of hemorrhagic shock and 5 mins of cardiac arrest. Motor deficit of the hind limbs was studied 6 hrs to 7 days after resuscitation. Also, nonoperated animals (n = 6) were used as the control. Histologic analysis (hematoxylin and eosin, Fluoro-Jade B, terminal deoxynucleotidyl transferase- mediated dUTP end-labeling [TUNEL], Klüver-Barrera) and ultrastructural analysis using electron microscopy were performed on samples from the CA1 region of the hippocampus and lumbar spinal cord. Demyelination of the white matter of the lumbar spinal cord was analyzed semiquantitatively using Scion Image software. MAIN RESULTS No paraplegic animals were observed in either group A or B. All group C animals showed severe hind-limb paralysis. Severe neuronal damage was found in the CA1 region of the hippocampus in all groups, and the state of delayed neuronal cell death was similar among the three groups. Neuronal damage in the lumbar spinal cord was detected only in group C animals, mainly in the dorsal horn and intermediate gray matter. Demyelination was prominent in the ventral and ventrolateral white matter in group C. A significant difference was observed between control and group C rats with Scion Image software. Ultrastructural analysis revealed extensive necrotic cell death in the intermediate gray matter in the lumbar spinal cord in group C rats. CONCLUSION The combination in the global ischemia model (i.e., hemorrhagic shock followed by cardiac arrest) caused severe neuronal damage in the central nervous system. Thereby, hind-limb paralysis after global ischemia might result from spinal cord damage. These results suggest that therapeutic strategies for preventing spinal cord injury are necessary when treating patients with severe global ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of traumatic brain and spinal cord injury models in rat using a modified impactor device

Introduction: The use of standard rodent model, allows for the understanding of neuronal injury physiopathology and helping development of therapeutic strategies. Because of eliminating technical problems, we designed a modified impactor device with ability to induce different degrees according to kilodyne from very mild to very severe of spinal cord injury (SCI) and traumatic brain injury (TBI...

متن کامل

S100B protein in serum is elevated after global cerebral ischemic injury

BACKGROUND S100B protein in patients with cardiac arrest, hemorrhagic shock and other causes of global cerebral ischemic injury will be dramatically increased. Ischemic brain injury may elevate the level of serum S100B protein and the severity of brain damage. METHODS This article is a critical and descriptive review on S100B protein in serum after ischemic brain injury. We searched Pubmed da...

متن کامل

Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension.

BACKGROUND AND PURPOSE It is generally accepted that the gray matter in the watershed area of the midthoracic level of the spinal cord is the ischemic watershed zone of the spinal cord. We performed a retrospective study to reevaluate the frequency and distribution of spinal cord injury after a global ischemic event. METHODS Clinical files and neuropathology specimens of all adult patients wi...

متن کامل

P35: Effect of Hydroalcoholic Extract of Agrimonia eupatoria on Alpha Motoneurons Regeneration of Anterior Spinal Cord after Compression of Sciatic Nerve in Rat

If nerve cells damaged, they cannot be restored by themselves. Agrimonia eupatoria has been used in traditional medicine to heal the wounds and scratch, and dry the scars. Therefore, this herb probably contains compounds with restorative properties. The purpose of this study was to investigate the restorative effect of Agrimonia eupatoria on alpha motor neurons of anterior spinal cord. In this ...

متن کامل

Anti-Inflammatory Effect of the Epigallocatechin Gallate Following Spinal Cord Trauma in Rat

Background: Spinal cord injury (SCI) stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effects of epigallocatechin gallate (EGCG) on traumatized spinal cord. Methods: Rats were randomly divided into four groups of 12 rats each as follow: sham-operated group, trauma group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Critical care medicine

دوره 34 11  شماره 

صفحات  -

تاریخ انتشار 2006