One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.

نویسندگان

  • Wei-Shun Chang
  • Liane S Slaughter
  • Bishnu P Khanal
  • Pramit Manna
  • Eugene R Zubarev
  • Stephan Link
چکیده

Plasmon coupling in ordered metal nanoparticle assemblies leads to tunable collective surface plasmon resonances that strongly depend on the interparticle distance. Here we report on the surface plasmon scattering of polystyrene-functionalized 40 nm gold nanoparticles self-assembled into close-packed rings. Using single particle dark-field scattering spectroscopy, we observed strong near-field coupling between neighboring nanoparticles, which results in red-shifted multipolar plasmon modes highly polarized along the ring circumference. Correlated optical spectroscopy and scanning electron microscopy of individual rings with different diameters revealed that the plasmon coupling is independent of ring curvature and mostly insensitive to the local nanoparticle arrangement. Our results further suggest that a one-dimensional gold nanoparticle assembly yields long-range collective plasmonic properties similar to those of metallic nanowires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures.

The interaction between adjacent metal nanoparticles within an assembly induces interesting collective plasmonic properties. Using dark-field imaging of plasmon scattering, we investigated rings of gold nanoparticles and observed that the images were dependent on the substrate. In particular, for nanoparticles assembled on carbon and gold substrates, intensity line sections perpendicular to the...

متن کامل

Experimental study of the interaction between localized and propagating surface plasmons.

The interaction between localized and propagating surface plasmons is investigated in a structure consisting of a two-dimensional periodic gold nanoparticle array, an SiO2 spacer, and a gold film. The resonance wavelengths of the two types of surface plasmons supported by the structure are tailored by changing the gold nanoparticle size and the array period. An anticrossing of the resonance pos...

متن کامل

Adjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons

Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...

متن کامل

Engineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly

The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...

متن کامل

Building 3D Layer-by-Layer Graphene−Gold Nanoparticle Hybrid Architecture with Tunable Interlayer Distance

The ability to construct self-assembled three-dimensional (3D) superstructures with desired functionality is not only of scientific curiosity but also crucial in the bottom-up nanofabrication of smart materials and devices. Here a facile solution-processable strategy for creating 3D layer-by-layer graphene−gold nanoparticle architectures was developed in which cysteine molecules with amino grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2009