On the critical points of the 1-dimensional competitive learning vector quantization algorithm
نویسندگان
چکیده
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملA Note on Learning Vector Quantization
Vector Quantization is useful for data compression. Competitive Learning which minimizes reconstruction error is an appropriate algorithm for vector quantization of unlabelled data. Vector quantization of labelled data for classification has a different objective, to minimize the number of misclassifications, and a different algorithm is appropriate. We show that a variant of Kohonen’s LVQ2.1 a...
متن کاملAverage Competitive Learning Vector Quantization
We propose a new algorithm for vector quantization:Average Competitive Learning Vector Quantization(ACLVQ). It is a rather simple modification of the classical Competitive Learning Vector Quantization(CLVQ). This new formulation gives us similar results for the quantization error to those obtained by the CLVQ and reduce considerably the computation time to achieve the optimal quantizer. We esta...
متن کامل