Characterization of generalized invexity in multi-objective fractional variational problem

نویسندگان

  • Promila Kumar
  • Bharti Sharma
چکیده

In this article we define certain conditions on the functionals of multi-objective fractional variational problem in order that it becomes F-Kuhn Tucker pseudo invex or F-Fritz John pseudo invex. We also define F-KT and F-FJ points. Further, these problems are characterized such that all F-KT and F-FJ points become efficient solutions for the featured problem. An example is presented to verify the existence of F-KT point. A Parametric dual is proposed and various duality results are proved under the assumption of F-KT as well as F-FJ pseudo invexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality criteria for sum of fractional multiobjective optimization problem with generalized invexity

The sum of a fractional program is a nonconvex optimization problem in the field of fractional programming and it is difficult to solve. The development of research is restricted to single objective sums of fractional problems only. The branch and bound methods/algorithms are developed in the literature for this problem as a single objective problem. The theoretical and algorithmic development ...

متن کامل

Symmetric duality for multiobjective fractional variational problems with generalized invexity

The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.

متن کامل

Sufficiency and Duality of Fractional Integral Programming with Generalized Invexity

Convexity assumptions for fractional programming of variational type are relaxed to generalized invexity. The sufficient optimality conditions are employed to construct a mixed dual programming problem. It will involve the Wolfe type dual and Mond-Weir type dual as its special situations. Several duality theorems concerning weak, strong, and strict converse duality under the framework in mixed ...

متن کامل

Generalized Invexity of Higher Order and Its Applications in Variational Problems

In the present paper the definition of invexity for continuous functions is extended to invexity of order m which is further generalized to ρ-pseudoinvexity type I of order m, ρ-pseudoinvexity type II of order m, as well as ρ-quasi invexity type I of order m and ρ-quasiinvexity type II of order m. The central objective of the paper is to study variational problem where the functionals involved ...

متن کامل

On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems

In this paper, we extend the notions of ( , ρ)-invexity and generalized ( , ρ)invexity to the continuous case and we use these concepts to establish sufficient optimality conditions for the considered class of nonconvexmultiobjective variational control problems. Further, multiobjective variational control mixed dual problem is given for the considered multiobjective variational control problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016