An In nite Class of Convex Tangent Cones
نویسنده
چکیده
Since the early 1970's there have been many papers devoted to tangent cones and their applications to optimization. Much of the debate over which tangent cone is \best" has centered on the properties of Clarke's tangent cone and whether other cones have these properties. In this paper it is shown that there are an innnite number of tangent cones with some of the nicest properties of Clarke's cone. These properties are convexity, multiple characterizations, and proximal normal formulas. The nature of these cones indicates that the two extremes of this family of cones, the cones of Clarke and B{tangent cone or the cone of Michel and Penot, warrant further study. The relationship between these new cones and the diierentiability of functions is also considered.
منابع مشابه
Bornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملFacially Dual Complete (nice) Cones and Lexicographic Tangents
We study the boundary structure of closed convex cones, with a focus on facially dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and they behave well in the context of duality theory for convex optimization. Using the wellknown and very commonly used concept of tangent cones in nonlinear optimization, we introduce some new notions for exposure of f...
متن کاملConvex Cones in Finite - Dimensional Real Vector
Various classes of nite-dimensional closed convex cones are studied. Equivalent characterizations of pointed cones, pyramids and rational pyramids are given. Special class of regular cones, corresponding to \continuous linear" quasiorderings of integer vectors is introduced and equivalently characterized. It comprehends both pointed cones and rational pyramids. Two diierent ways of determining ...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملTangent Cones and Regularity of Real Hypersurfaces
We characterize C embedded hypersurfaces of R as the only locally closed sets with continuously varying flat tangent cones whose measuretheoretic-multiplicity is at most m < 3/2. It follows then that any (topological) hypersurface which has flat tangent cones and is supported everywhere by balls of uniform radius is C. In the real analytic case the same conclusion holds under the weakened hypot...
متن کامل