An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation
نویسندگان
چکیده
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.
منابع مشابه
Plasmid r1 conjugative DNA processing is regulated at the coupling protein interface.
Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleopro...
متن کاملProtein and DNA effectors control the TraI conjugative helicase of plasmid R1.
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI...
متن کاملConjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that...
متن کاملQuorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae.
Transfer of the Rhizobium leguminosarum biovar viciae symbiosis plasmid pRL1JI is regulated by a cascade of gene induction involving three LuxR-type quorum-sensing regulators, TraR, BisR and CinR. TraR induces the plasmid transfer traI-trb operon in a population-density-dependent manner in response to N-acylhomoserine lactones (AHLs) made by TraI. Expression of the traR gene is primarily induce...
متن کاملStructure of a translocation signal domain mediating conjugative transfer by type IV secretion systems
Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo-protein complex which is subsequently recruited for transport by a plasmid-encoded type IV secretion system. In previous work we identified the targ...
متن کامل