Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law
نویسندگان
چکیده
José Francisco Gómez-Aguilar 1,* ID , María Guadalupe López-López 2 ID , Victor Manuel Alvarado-Martínez 2, Dumitru Baleanu 3,4 and Hasib Khan 5,6,* 1 CONACyT-Tecnológico Nacional de Mexico/CENIDET, Interior Internado Palmira s/n Col. Palmira C.P., Cuernavaca 62490, Mexico 2 Tecnológico Nacional de Mexico/CENIDET, Interior Internado Palmira s/n Col. Palmira C.P., Cuernavaca 62490, Mexico; [email protected] (M.G.L.-L.); [email protected] (V.M.A.-M.) 3 Department of Mathematics, Faculty of Art and Sciences, Cankaya University, Ankara 06790, Turkey; [email protected] 4 Institute of Space Sciences, P.O. Box, MG-23, Magurele-Bucharest R 76900, Romania 5 College of Engineering, Mechanics and Materials, Hohai University, Nanjing 210098, China 6 Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Sheringal 18000, Pakistan * Correspondence: [email protected] (J.F.G.-A.); [email protected] (H.K.); Tel.: +52-777-3627770 (J.F.G.-A.); +92-321-9760796 (H.K.)
منابع مشابه
Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملMittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملPoisson-type processes governed by fractional and higher-order recursive differential equations
We consider some fractional extensions of the recursive differential equation governing the Poisson process, i.e. d d t pk(t) =−λ(pk(t)− pk−1(t)), k ≥ 0, t > 0 by introducing fractional time-derivatives of order ν , 2ν , ..., nν . We show that the so-called “Generalized Mittag-Leffler functions” Ek α,β(x), x ∈ R (introduced by Prabhakar [24]) arise as solutions of these equations. The correspon...
متن کاملStability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
Stability of fractional-order nonlinear dynamic systems is studied using Lyapunov direct method with the introductions of Mittag–Leffler stability and generalized Mittag–Leffler stability notions. With the definitions of Mittag–Leffler stability and generalized Mittag–Leffler stability proposed, the decaying speed of the Lyapunov function can bemore generally characterized which include the exp...
متن کاملMatrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017