Curvature Dependence of Propagating Velocity for a Simplified Calcium Model

نویسندگان

  • Wenjun Zhang
  • James Sneyd
  • Je-Chiang Tsai
چکیده

It is known that curvature relation plays a key role in the propagation of two-dimensional waves in an excitable model. Such a relation is believed to obey the eikonal equation for typical excitable models (e.g., the FitzHugh-Nagumo (FHN) model), which states that the relation between the normal velocity and the local curvature is approximately linear. In this paper, we show that for a simplified model of intracellular calcium dynamics, although its temporal dynamics can be investigated by analogy with the FHN model, the curvature relation does not obey the eikonal equation. Further, the inconsistency with the eikonal equation for the calcium model is because of the dispersion relation between wave speed s and volume-ratio parameter γ in the closed-cell version of the model, not because of the separation of the fast and the slow variables as in the FHN model. Hence this simplified calcium model may be an unexpected excitable system, whose wave propagation properties cannot be always understood by analogy with the FHN model. School of Computing and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand. Phone: +64-9-9219999-x5094; Email address: [email protected]). Department of Mathematics, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi 621, Taiwan. (Email address: [email protected]). To whom the correspondence should be addressed (J.-C. Tsai). Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand (Email address: [email protected]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simplified Solution for Advection Dominated Accretion Flows with Outflow

The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...

متن کامل

Theory of dynamic crack branching in brittle materials

The problem of dynamic symmetric branching of a tensile crack propagating in a brittle material is studied within Linear Elastic Fracture Mechanics theory. The Griffith energy criterion and the principle of local symmetry provide necessary conditions for the onset of dynamic branching instability and for the subsequent paths of the branches. The theory predicts a critical velocity for branching...

متن کامل

NUMERICAL SIMULATION OF COMBUSTION SYNTHESIS OF ALUMINIDE INTERMETALLIC COMPOUNDS

Combustion synthesis is a special thermophysico-chemical process applied for production of intermetallic compounds. In the present work, a reaction–diffusion numerical model was developed to analyze the combustion synthesis of aluminide intermetallics by self-propagating high-temperature synthesis process. In order to verify the reliability of the numerical model, an experimental setup was desi...

متن کامل

Nonlinear Muscles, Passive Viscoelasticity and Body Taper Conspire To Create Neuromechanical Phase Lags in Anguilliform Swimmers

Locomotion provides superb examples of cooperation among neuromuscular systems, environmental reaction forces, and sensory feedback. As part of a program to understand the neuromechanics of locomotion, here we construct a model of anguilliform (eel-like) swimming in slender fishes. Building on a continuum mechanical representation of the body as an viscoelastic rod, actuated by a traveling wave...

متن کامل

Numerical Investigation of Turbulent Mass Transfer in a 90° Bend

This paper presents a numerical study of local mass transfer coefficients in a 90° bend using the RNG version of k–e model to include the influence of curvature on the turbulent transport. Simulations were performed for flow through a 90°, 3-D bend for Reynolds numbers of 13500, 90000, and 390000, Schmidt numbers of 2.53 and 700 and curvature ratios of 1.5, 2, and 2.5. The differences betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2014