Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

نویسندگان

  • Eric Johnsen
  • Johan Larsson
  • Ankit V. Bhagatwala
  • William H. Cabot
  • Parviz Moin
  • Britton J. Olson
  • Pradeep Singh Rawat
  • Santhosh K. Shankar
  • Björn Sjögreen
  • H. C. Yee
  • Xiaolin Zhong
  • Sanjiva K. Lele
چکیده

Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shockwaves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor–Green vortex, Shu–Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivitymethods inwhich the artificial bulk viscosity is based on themagnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve thisbehavior. Forwell-defined shocks, the shockfittingapproachyields good results. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS

In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...

متن کامل

Numerical Simulation of Shock-Turbulence Interactions Using High-Order Shock-Fitting Algorithms

High-order methods are critical for reliable numerical simulation of strong-shock and turbulence interaction problems. Such problems are not well understood due to limitations of numerical methods. Most widely used shock capturing methods for the numerical simulation of compressible flows are inherently dissipative, only first order accurate and may incur numerical oscillations near the shock w...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae

In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. The ILES approach has been applied to different contexts, with varying degrees of success. It is the de-facto standard in many astrophysical simulations and in particular in studies of core-collapse supernovae (CCSN). R...

متن کامل

Stencil Adaptation Properties of a WENO Scheme in Direct Numerical Simulations of Compressible Turbulence

Weighted essentially non-oscillatory (WENO) methods can simultaneously provide the high order of accuracy, high bandwidth-resolving efficiency, and shock-capturing capability required for the detailed simulation of compressible turbulence. However, rigorous analysis of the actual versus theoretical error properties of these non-linear numerical methods is difficult. We use a bandwidth-optimized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010