The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat.

نویسندگان

  • Mohammad K Dallatu
  • Elizabeth Nwokocha
  • Ngozi Agu
  • Choi Myung
  • Mohammad A Newaz
  • Gabriela Garcia
  • Luan D Truong
  • Adebayo O Oyekan
چکیده

KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions. This study tested the hypothesis that increased HIF-1α consequent to reduced PHD expression contributes to the attendant hypertension and target organ damage in deoxycorticosterone acetate (DOCA)/salt hypertension and that PHD inhibition ameliorates this effect. In rats made hypertensive by DOCA/salt treatment (DOCA 50 mg/kg s/c; 1% NaCl orally), PHD inhibition with dimethyl oxallyl glycine (DMOG) markedly attenuated hypertension (P<0.05), proteinuria (P<0.05) and attendant tubular interstitial changes and glomerular damage (P<0.05). Accompanying these changes, DMOG blunted the increased expression of kidney injury molecule (KIM)-1 (P<0.05), a marker of tubular injury and reversed the decreased expression of nephrin (P<0.05), a marker of glomerular injury. DMOG also decreased collagen I staining (P<0.05), increased serum nitrite (P<0.05) and decreased serum 8-isopostane (P<0.05). However, the increased HIF-1α expression (P<0.01) and decreased PHD2 expression (P<0.05) in DOCA/salt hypertensive rats was not affected by DMOG. These data suggest that reduced PHD2 expression with consequent increase in HIF-1α expression probably results from hypoxia induced by DOCA/salt treatment with the continued hypoxia and reduced PHD2 expression evoking hypertensive renal injury and collagen deposition at later stages. Moreover, a PHD inhibitor exerted a protective effect in DOCA/salt hypertension by mechanisms involving increased nitric oxide production and reduced production of reactive oxygen species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-Oxoglutarate regulates binding of hydroxylated hypoxia-inducible factor to prolyl hydroxylase domain 2.

Prolyl hydroxylation of hypoxia inducible factor (HIF)-α, as catalysed by the Fe(ii)/2-oxoglutarate (2OG)-dependent prolyl hydroxylase domain (PHD) enzymes, has a hypoxia sensing role in animals. We report that binding of prolyl-hydroxylated HIF-α to PHD2 is ∼50 fold hindered by prior 2OG binding; thus, when 2OG is limiting, HIF-α degradation might be inhibited by PHD binding.

متن کامل

Gene Transfer of Prolyl Hydroxylase Domain 2 Inhibits Hypoxia-inducible Angiogenesis in a Model of Choroidal Neovascularization

Cellular responses to hypoxia are mediated by the hypoxia-inducible factors (HIF). In normoxia, HIF-α proteins are regulated by a family of dioxygenases, through prolyl and asparagyl hydroxylation, culminating in proteasomal degradation and transcriptional inactivation. In hypoxia, the dioxygenases become inactive and allow formation of HIF transcription factor, responsible for upregulation of ...

متن کامل

Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases.

The activity of hypoxia-inducible transcription factor HIF, an alphabeta heterodimer that has an essential role in adaptation to low oxygen availability, is regulated by two oxygen-dependent hydroxylation events. Hydroxylation of specific proline residues by HIF prolyl 4-hydroxylases targets the HIF-alpha subunit for proteasomal destruction, whereas hydroxylation of an asparagine in the C-termi...

متن کامل

Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor

Complement C1q is part of the C1 macromolecular complex that mediates the classical complement activation pathway: a major arm of innate immune defense. C1q is composed of A, B, and C chains that require post-translational prolyl 4-hydroxylation of their N-terminal collagen-like domain to enable the formation of the functional triple helical multimers. The prolyl 4-hydroxylase(s) that hydroxyla...

متن کامل

Quercetin activates an angiogenic pathway, hypoxia inducible factor (HIF)-1-vascular endothelial growth factor, by inhibiting HIF-prolyl hydroxylase: a structural analysis of quercetin for inhibiting HIF-prolyl hydroxylase.

We investigated a molecular mechanism underlying quercetin-mediated amelioration of colonic mucosal injury and analyzed chemical structure contributing to the quercetin's effect. Quercetin up-regulated vascular endothelial growth factor (VEGF), an ulcer healing factor, not only in colon epithelial cell lines but also in the inflamed colonic tissue. VEGF derived from quercetin-treated colon epit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hypertension : open access

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 2014