Model of transport properties of thermoelectric nanocomposite materials
نویسندگان
چکیده
We present a model describing the carrier conductivity and Seebeck coefficient of thermoelectric nanocomposite materials consisting of granular regions. The model is successfully applied to explain relevant experimental data for PbTe nanocomposites. A key factor is the grain potential boundary scattering mechanism. Other mechanisms, such as carrier-acoustic phonon, carrier-nonpolar optical phonon, and carrier-ionized impurities scattering are also included. Our calculations reveal that by changing the physical characteristics of the grains, such as potential barrier height, width, and distance between the grains, one can increase the mean energy per carrier in order to obtain an optimum power factor for improved thermoelectric performance. The model can be applied to other nanocomposites by incorporating the appropriate electronic structure parameters.
منابع مشابه
Modeling the Thermoelectric Properties of Bulk and Nanocomposite Thermoelectric Materials
Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, certain nanostructured materials have been fabricated with high thermoelectric properties than those of commercial bulk materials, leading to a renewed interest in thermoe...
متن کاملModeling study of thermoelectric SiGe nanocomposites
Citation Minnich, A. J. et al. " Modeling study of thermoelectric SiGe nanocomposites. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Nanocomposite thermoelectric...
متن کاملSemiclassical model for thermoelectric transport in nanocomposites
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Nanocomposites ͑NCs͒ has recently been proposed and experimentally demonstrated to be potentially high-efficiency the...
متن کاملEnhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.
To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could ...
متن کاملNanostructured Thermoelectric Materials: From Superlattices to Nanocomposites
Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009