Different Effects of Implanting Sensory Nerve or Blood Vessel on the Vascularization, Neurotization, and Osteogenesis of Tissue-Engineered Bone In Vivo

نویسندگان

  • Jun-jun Fan
  • Tian-wang Mu
  • Jun-jun Qin
  • Long Bi
  • Guo-xian Pei
چکیده

To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on “Microsurgical Techniques Used to Construct the Vascularized and Neurotized Tissue Engineered Bone”

The lack of vascularization in the tissue engineered bone results in poor survival and ossification. Tissue engineered bone can be wrapped in the soft tissue flaps which are rich in blood supply to complete the vascularization in vivo by microsurgical technique, and the surface of the bone graft can be invaded with new vascular network. The intrinsic vascularization can be induced via a blood v...

متن کامل

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 Dec; 159(4)

Aim. To evaluate the effects of autologous blood vessels and nerves on vascularization. Methods. A dog model of tissue-engineered bone vascularization was established by constructing inferior alveolar neurovascular bundles through the mandibular canal. Sixteen 12-month-old healthy beagles were randomly divided into two groups (n=8). Group A retained inferior alveolar neurovascular bundles, and ...

متن کامل

The effect of bone marrow mesenchymal stem cells on recovery of skeletal muscle after neurotization surgery in rat

Objective(s): When the nerve is injured near its entrance to the muscle belly, we cannot perform conventional methods. One useful method in such a situation is neurotization surgery. In this study, Bone marrow mesenchymal stem cells (BMSCs) implanted into the paralyzed muscle after neurotization surgery. These cells can stimulate axon growth and motor endplate formation, also prevent muscle atr...

متن کامل

Bioprinting in Vascularization Strategies

Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...

متن کامل

Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model.

The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014