High Frequency Thin Film Acoustic Ferroelectric Resonators

نویسندگان

  • Paul Kirby
  • Qing-Xin Su
  • Eiju Komuro
  • Masaaki Imura
  • Qi Zhang
  • Roger Whatmore
چکیده

Both ZnO and PZT Thin Film Bulk Acoustic Resonator filters were fabricated, tested and modeled in this study. The development of an accurate Mason model allows the effect of particular parasitic components on the microwave s-parameters in the region of the series and parallel resonances to be identified. The parasitic components that limit the performance of our ZnO and PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator filters are analysed. From an analysis of PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator measurements values for the longitudinal acoustic velocity and electromechanical coupling coefficient can be derived. Measured PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator filter responses confirm that the larger electromechanical coupling coefficients in this material compared to ZnO give wider filter band-widths. INTRODUCTION: There is a great commercial interest in decreasing the size of microwave 1-3 GHz filters to allow more functions to be incorporated in future mobile phones [1]. Presently there are two types of filters being developed to meet this need, ceramic filters based on electromagnetic modes and acoustic filters. The typical dimensions of both types of microwave filters are similar to the wavelength at the operating frequency. By using the piezoelectric effect to generate acoustic modes wavelengths and dimensions can be reduced by about four orders of magnitude compared to electromagnetic modes. There are two types of acoustic filters considered contenders for future generations of mobile phones, both based on piezoelectric materials: surface acoustic wave (SAW) devices and Thin Film Bulk Acoustic Resonators (FBAR). The piezoelectric effect has been widely used in bulk acoustic resonators, such as single crystal quartz for many years. Recently by careful thinning or etching the quartz plate operation up to 200 MHz can be achieved but the low acoustic velocity of quartz and the resulting fragility of thinned substrates means that this technology cannot progress to higher frequencies. In SAW devices that direction of propagation is in the plane of the wafer while for FBAR it is perpendicular to a substrate surface. For FBAR operation the piezoelectric film thickness must be of the order of the acoustic wavelength at the desired operating frequency. In this paper we compare two candidate thin film piezoelectric materials, ZnO and PbZr0.3Ti0.7O3 (PZT) that have different acoustic properties. Although there has been considerable previous work on ZnO FBAR [2] and ZnO FBAR filters [3] there has only been a few reports on PZT FBARs [4]. In particular, the electromechanical coupling coefficients Mat. Res. Soc. Symp. Proc. Vol. 655 © 2001 Materials Research Society

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and characterization of ferro- and piezoelectric multilayer devices for high frequency applications [Ferro- ja pietsosähköisten monikerroskomponenttien valmistus ja karakterisointi suurtaajuussovelluksiin]

By means of thin film technology a reduction of size, cost, and power consumption of electronic circuits can be achieved. The required specifications are attained by proper design and combinations of innovative materials and manufacturing technologies. This thesis focuses on the development and fabrication of low-loss ceramic thin film devices for radio and microwave frequency applications. The...

متن کامل

High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

Articles you may be interested in Comprehensive characterization of surface acoustic wave resonators using relaxor based ferroelectric single crystals Appl. Single ferroelectric domain nucleation and growth monitored by high speed piezoforce microscopy High-frequency surface acoustic wave devices based on LiNbO 3 diamond multilayered structure Appl. High-frequency surface acoustic wave device b...

متن کامل

Piezoelectric and ferroelectric device technologies for microwave oscillators

The purpose of this thesis is to investigate piezoelectric and ferroelectric thin film device technologies for application in microwave oscillators. Thin film varactors based on ferroelectric materials are considered. Experimental development of practical varactors based on paraelectric phase BaxSr1−xTiO3, in terms of layout design and model extraction, is presented in the thesis. Experimental ...

متن کامل

Switchable and tunable bulk acoustic wave resonators based on BaxSr1−xTiO3 thin films

The main focus of this thesis is the study of a novel microwave component, the tunable thin film bulk acoustic wave resonator (TFBAR), based on ferroelectric BaxSr1−xTiO3 thin films. Conventional fixed frequency TFBARs, widely used for filtering applications in wireless communication systems, are based on ordinary piezoelectrics. The tunable TFBAR on the other hand utilizes the dc field induced...

متن کامل

Thin-Film Bulk Acoustic Resonators and Filters Using ZnO and Lead–Zirconium–Titanate Thin Films

This paper presents the findings of a design, modeling, and fabrication study of ZnO and PbZr0 3Ti0 7O3 thin-film bulk acoustic resonators and filters. Measurements of the high-frequency responses of ZnO resonators having different area are used to develop an acoustic model that accurately represents resonator impedance data. The models are also used to interpret -parameter measurements on thin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001