Pointwise Estimates for the Bergman Kernel of the Weighted Fock Space

نویسندگان

  • JORDI MARZO
  • JOAQUIM ORTEGA-CERDÀ
چکیده

We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in L2(e−2φ) where φ is a subharmonic function with ∆φ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous CauchyRiemann equation and we characterize the compactness of this operator in terms of ∆φ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bergman projections on weighted Fock spaces in several complex variables

Let ϕ be a real-valued plurisubharmonic function on [Formula: see text] whose complex Hessian has uniformly comparable eigenvalues, and let [Formula: see text] be the Fock space induced by ϕ. In this paper, we conclude that the Bergman projection is bounded from the pth Lebesgue space [Formula: see text] to [Formula: see text] for [Formula: see text]. As a remark, we claim that Bergman projecti...

متن کامل

2 9 A ug 2 00 6 Norm expansion along a zero variety in C d

The reproducing kernel function of a weighted Bergman space over domains in C is known explicitly in only a small number of instances. Here, we introduce a process of orthogonal norm expansion along a subvariety of codimension 1, which also leads to a series expansion of the reproducing kernel in terms of reproducing kernels defined on the subvariety. The problem of finding the reproducing kern...

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Linear Differential Equations with Coefficients in Fock Type Space

where the coefficients are entire functions. In [8], equations of the form (1) with coefficients in weighted Bergman or Hardy spaces are studied. The direct problem is proved, that is, if the coefficients aj(z), j = 0, ..., k − 1 of (1) belong to the weighted Bergman space, then all solutions are of finite order of growth and belong to weighted Bergman space. The inverse problem is also investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008