Roots of Ehrhart Polynomials of Gorenstein Fano Polytopes

نویسندگان

  • TAKAYUKI HIBI
  • AKIHIRO HIGASHITANI
چکیده

Abstract. Given arbitrary integers k and d with 0 ≤ 2k ≤ d, we construct a Gorenstein Fano polytope P ⊂ R of dimension d such that (i) its Ehrhart polynomial i(P , n) possesses d distinct roots; (ii) i(P , n) possesses exactly 2k imaginary roots; (iii) i(P , n) possesses exactly d − 2k real roots; (iv) the real part of each of the imaginary roots is equal to −1/2; (v) all of the real roots belong to the open interval (−1, 0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roots of Ehrhart Polynomials and Symmetric Δ-vectors

Abstract. The conjecture on roots of Ehrhart polynomials, stated by Matsui et al. [15, Conjecture 4.10], says that all roots α of the Ehrhart polynomial of a Gorenstein Fano polytope of dimension d satisfy − d 2 ≤ Re(α) ≤ d 2 − 1. In this paper, we observe the behaviors of roots of SSNN polynomials which are a wider class of the polynomials containing all the Ehrhart polynomials of Gorenstein F...

متن کامل

Roots of Ehrhart Polynomials Arising from Graphs

Several polytopes arise from finite graphs. For edge and symmetric edge polytopes, in particular, exhaustive computation of the Ehrhart polynomials not merely supports the conjecture of Beck et al. that all roots α of Ehrhart polynomials of polytopes of dimension D satisfy −D ≤ Re(α) ≤ D − 1, but also reveals some interesting phenomena for each type of polytope. Here we present two new conjectu...

متن کامل

Smooth Fano polytopes whose Ehrhart polynomial has a root with large real part ( extended abstract )

The symmetric edge polytopes of odd cycles (del Pezzo polytopes) are known as smooth Fano polytopes. In this extended abstract, we show that if the length of the cycle is 127, then the Ehrhart polynomial has a root whose real part is greater than the dimension. As a result, we have a smooth Fano polytope that is a counterexample to the two conjectures on the roots of Ehrhart polynomials. Résumé...

متن کامل

Smooth Fano Polytopes Whose Ehrhart Polynomial Has a Root with Large Real Part

The symmetric edge polytopes of odd cycles (del Pezzo polytopes) are known as smooth Fano polytopes. In this extended abstract, we show that if the length of the cycle is 127, then the Ehrhart polynomial has a root whose real part is greater than the dimension. As a result, we have a smooth Fano polytope that is a counterexample to the two conjectures on the roots of Ehrhart polynomials. Résumé...

متن کامل

Roots of Ehrhart Polynomials of Smooth Fano Polytopes

V. Golyshev conjectured that for any smooth polytope P with dim(P ) ≤ 5 the roots z ∈ C of the Ehrhart polynomial for P have real part equal to −1/2. An elementary proof is given, and in each dimension the roots are described explicitly. We also present examples which demonstrate that this result cannot be extended to dimension six.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013