Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks
نویسندگان
چکیده
Let M be a 2 × 2 matrix of Laurent polynomials with real coefficients and symmetry. In this paper, we obtain a necessary and sufficient condition for the existence of four Laurent polynomials (or FIR filters) u1, u2, v1, v2 with real coefficients and symmetry such that [ u1(z) v1(z) u2(z) v2(z) ] [ u1(1/z) u2(1/z) v1(1/z) v2(1/z) ] = M(z) ∀ z ∈ C\{0} and [Su1](z)[Sv2](z) = [Su2](z)[Sv1](z), where [Sp](z) = p(z)/p(1/z) for a nonzero Laurent polynomial p. Our criterion can be easily checked and a step-by-step algorithm will be given to construct the symmetric filters u1, u2, v1, v2. As an application of this result to symmetric framelet filter banks, we present a necessary and sufficient condition for the construction of a symmetric MRA tight wavelet frame with two compactly supported generators derived from a given symmetric refinable function. Once such a necessary and sufficient condition is satisfied, an algorithm will be used to construct a symmetric framelet filter bank with two high-pass filters which is of interest in applications such as signal denoising and image processing. As an illustration of our results and algorithms in this paper, we give several examples of symmetric framelet filter banks with two high-pass filters which have good vanishing moments and are derived from various symmetric low-pass filters including some B-spline filters.
منابع مشابه
Matrix Splitting with Symmetry and Symmetric Tight Framelet Filter Banks with Two High-pass Filters
The oblique extension principle introduced in [3, 5] is a general procedure to construct tight wavelet frames and their associated filter banks. Symmetric tight framelet filter banks with two high-pass filters have been studied in [13, 16, 17]. Tight framelet filter banks with or without symmetry have been constructed in [1]–[21] and references therein. This paper is largely motivated by severa...
متن کاملAlgorithm for constructing symmetric dual framelet filter banks
Dual wavelet frames and their associated dual framelet filter banks are often constructed using the oblique extension principle. In comparison with the construction of tight wavelet frames and tight framelet filter banks, it is indeed quite easy to obtain some particular examples of dual framelet filter banks with or without symmetry from any given pair of low-pass filters. However, such constr...
متن کاملMatrix Extension with Symmetry and Its Application to Filter Banks
Let P be an r×smatrix of Laurent polynomials with symmetry such that P(z)P∗(z) = Ir for all z ∈ C\{0} and the symmetry of P is compatible. The matrix extension problem with symmetry is to find an s × s square matrix Pe of Laurent polynomials with symmetry such that [Ir,0]Pe = P (that is, the submatrix of the first r rows of Pe is the given matrix P), Pe is paraunitary satisfying Pe(z)Pe(z) = Is...
متن کاملEuclidean Algorithm for Extension of Symmetric Laurent Polynomial Matrix and Its Application in Construction of Multiband Symmetric Perfect Reconstruction Filter Bank
For a given pair of s-dimensional real Laurent polynomials (~a(z),~b(z)), which has a certain type of symmetry and satisfies the dual condition~b(z) T ~a(z) = 1, an s× s Laurent polynomial matrix A(z) (together with its inverse A−1(z)) is called a symmetric Laurent polynomial matrix extension of the dual pair (~a(z),~b(z)) if A(z) has similar symmetry, the inverse A−1(Z) also is a Laurent polyn...
متن کاملElementary Matrix Decomposition Algorithm for Symmetric Extension of Laurent Polynomial Matrices and its Application in Construction of Symmetric M-band Filter Banks
In this paper, we develop a novel and effective algorithm for the construction of perfect reconstruction filter banks (PRFBs) with linear phase. In the algorithm, the key step is the symmetric Laurent polynomial matrix extension (SLPME). There are two typical problems in the construction: (1) For a given symmetric finite low-pass filter a with the polyphase, to construct a PRFBs with linear pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 26 شماره
صفحات -
تاریخ انتشار 2004