Lower Frame Rate Neural Network Acoustic Models
نویسندگان
چکیده
Recently neural network acoustic models trained with Connectionist Temporal Classification (CTC) were proposed as an alternative approach to conventional cross-entropy trained neural network acoustic models which output frame-level decisions every 10ms [1]. As opposed to conventional models, CTC learns an alignment jointly with the acoustic model, and outputs a blank symbol in addition to the regular acoustic state units. This allows the CTC model to run with a lower frame rate, outputting decisions every 30ms rather than 10ms as in conventional models, thus improving overall system speed. In this work, we explore how conventional models behave with lower frame rates. On a large vocabulary Voice Search task, we will show that with conventional models, we can slow the frame rate to 40ms while improving WER by 3% relative over a CTC-based model.
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملFast and accurate recurrent neural network acoustic models for speech recognition
We have recently shown that deep Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) outperform feed forward deep neural networks (DNNs) as acoustic models for speech recognition. More recently, we have shown that the performance of sequence trained context dependent (CD) hidden Markov model (HMM) acoustic models using such LSTM RNNs can be equaled by sequence trained phone models in...
متن کاملContext Dependency in Neural Network Based Acoustic Models
Our recent experiments with Gaussian mixture (GMM) based acoustic models have shown that employing context dependent acoustic models, namely triphones, can greatly improve recognition accuracy [1] in comparison to systems based on context independent units. Significant portion of our research has been aimed at exploring the possibilities of neural networks as acoustic models for speech recognit...
متن کاملAcoustic Models Based on Non-uniform Segments and Bidirectional Recurrent Neural Networks
In this paper a new framework for acoustic model building is presented. It is based on non-uniform segment models, which are learned and scored with a time bidirectional recurrent neural network. While usually neural networks in speech recognition systems are used to estimate posterior "frame to phoneme" probabilities, they are used here to estimate directly "segment to phoneme" probabilities, ...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کامل