On the Partial Regularity of a 3D Model of the Navier-Stokes Equations
نویسندگان
چکیده
We study the partial regularity of a 3D model of the incompressible Navier-Stokes equations which was recently introduced by the authors in [11]. This model is derived for axisymmetric flows with swirl using a set of new variables. It preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected in the model. If we add the convection term back to our model, we would recover the full Navier-Stokes equations. In [11], we presented numerical evidence which seems to support that the 3D model develops finite time singularities while the corresponding solution of the 3D Navier-Stokes equations remains smooth. This suggests that the convection term play an essential role in stabilizing the nonlinear vortex stretching term. In this paper, we prove that for any suitable weak solution of the 3D model in an open set in space-time, the one-dimensional Hausdorff measure of the associated singular set is zero. The partial regularity result of this paper is an analogue of the Caffarelli-Kohn-Nirenberg theory for the 3D Navier-Stokes equations. Keyword: Partial regularity, finite time singularities, 3D Navier-Stokes equations, stabilizing effect of convection.
منابع مشابه
Remarks on Regularity Criteria for the 3d Navier-stokes Equations
In this article, we study the regularity criteria for the 3D NavierStokes equations involving derivatives of the partial components of the velocity. It is proved that if ∇he u belongs to Triebel-Lizorkin space, ∇u3 or u3 belongs to Morrey-Campanato space, then the solution remains smooth on [0, T ].
متن کاملA study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملRegularity Conditions for the 3d Navier-stokes Equations
We obtain logarithmic improvements for conditions of regularity in the 3D Navier-Stokes equations.
متن کاملGlobal Regularity for a Family of 3d Models of the Axi-symmetric Navier-stokes Equations
We consider a family of 3D models for the axi-symmetric incompressible Navier-Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier-Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the or...
متن کاملA new proof of partial regularity of solutions to Navier Stokes equations
In this paper we give a new proof of the partial regularity of solutions to the incompressible Navier Stokes equation in dimension 3 first proved by Caffarelli, Kohn and Nirenberg. The proof relies on a method introduced by De Giorgi for elliptic equations.
متن کامل