Low Polynomial Exclusion of Planar Graph Patterns

نویسندگان

  • Jean-Florent Raymond
  • Dimitrios M. Thilikos
چکیده

The celebrated grid exclusion theorem states that for every h-vertex planar graph H , there is a constant ch such that if a graph G does not contain H as a minor then G has treewidth at most ch. We are looking for patterns of H where this bound can become a low degree polynomial. We provide such bounds for the following parameterized graphs: the wheel (ch = O(h)), the double wheel (ch = O(h 2 · log h)), any graph of pathwidth at most 2 (ch = O(h )), and the yurt graph (ch = O(h )).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

A Polynomial Algorithm for Submap Isomorphism: Application to Searching Patterns in Images

In this paper, we address the problem of searching for a pattern in a plane graph, i.e., a planar drawing of a planar graph. To do that, we propose to model plane graphs with 2-dimensional combinatorial maps, which provide nice data structures for modelling the topology of a subdivision of a plane into nodes, edges and faces. We define submap isomorphism, we give a polynomial algorithm for this...

متن کامل

On Computing the Distinguishing Numbers of Planar Graphs and Beyond: a Counting Approach

A vertex k-labeling of graph G is distinguishing if the only automorphism that preserves the labels of G is the identity map. The distinguishing number of G, D(G), is the smallest integer k for which G has a distinguishing k-labeling. In this paper, we apply the principle of inclusion-exclusion and develop recursive formulas to count the number of inequivalent distinguishing k-labelings of a gr...

متن کامل

Learning Characteristic Structured Patterns in Rooted Planar Maps

Extending the concept of ordered graphs, we propose a new data structure to express rooted planar maps, which is called a planar map pattern. In order to develop an efficient data mining method from a dataset of rooted planar maps, we propose a polynomial time algorithm for finding a minimally generalized planar map pattern, which represents maximal structural features common to rooted planar m...

متن کامل

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2017