An ultrafast Geiger-mode single photon avalanche diode in 0.18 m CMOS technology

نویسندگان

  • Hod Finkelstein
  • Mark J. Hsu
  • Sadik Esener
چکیده

We demonstrate a new single-photon avalanche diode (SPAD) device, which utilizes the silicon-dioxide shallow-trench isolation (STI) structure common to all deep-submicron CMOS technologies, both for junction planarization and as an area-efficient guard-ring. This makes it possible to achieve an order-of-magnitude improvement in fill factor and a significant reduction in pixel area compared with existing CMOS SPADs, and results in improved SPAD performance. We present numerical simulations as well preliminary experimental results from a test chip, which was manufactured in an IBM 0.18 m CMOS technology, and which incorporates the devices. With these new and efficient structures, 12 m-pitch pixels with sub-10ns dead times are achievable without requiring active recharge, creating the opportunity to integrate large arrays of these ultra-fast SPADs for use in biological imaging systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical μ-Lens Synthesis Using Dual-Junction Single-Photon Avalanche Diode

This work presents a dual-junction, single-photon avalanche diode (SPAD) with electrical μ-lens designed and simulated in 90 nm standard complementary metal oxide semiconductor (CMOS) technology. The evaluated structure can collect the photons impinging beneath the pixel guard ring, as well as the pixel active area. The fill factor of the SPAD increases from 12.5% to 42% in comparison with simi...

متن کامل

Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems

A single-photon avalanche diode (SPAD) with enhanced near-infrared (NIR) sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR) systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE) without compromising the fill factor (FF) and a low breakdown voltage of approxim...

متن کامل

Arrays of Single Photon Avalanche Diodes in CMOS Technology: Picosecond Timing Resolution for Range Imaging (INVITED)

A solid-state imager fabricated in CMOS technology is presented for depth information capture of arbitrary 3D objects with millimeter resolution. The system is based on an array of 32x32 pixels that independently measure the time-of-flight of a ray of light as it is reflected back from the objects in a scene. A single cone of pulsed laser light illuminates the scene, thus no complex mechanical ...

متن کامل

ISSCC 2004 / SESSION 6 / IMAGING / 6 . 7 6 . 7 . A CMOS Single Photon Avalanche Diode Array for 3 D Imaging

Time-of-flight (TOF) measurements using pulsed light beams for 3D imaging or profiling require either a costly mechanical device to scan the scene [1] or a short and highly energetic optical pulse to flood the scene with photons [2]. An alternative to these methods is the use of detector arrays based on single photon avalanche diodes (SPADs) operating in Geiger mode [3]. These devices accuratel...

متن کامل

Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006