Zero-Viscosity Limit of the Linearized Compressible Navier-Stokes Equations with Highly Oscillatory Forces in the Half-Plane

نویسندگان

  • Ya-Guang Wang
  • Zhouping Xin
چکیده

We study the asymptotic expansion of solutions to the linearized compressible Navier-Stokes equations with highly oscillatory forces in the half-plane with nonslip boundary conditions for small viscosity. The wave length of oscillations is assumed to be proportional to the square root of the viscosity. By means of asymptotic analysis, we deduce that the zero-viscosity limit of solutions satisfies a linearized Euler system away from the boundary, and oscillations are propagated in a way of linear geometric optics in free space. In a small neighborhood of boundary, a boundary layer appears and satisfies a linearized Prandtl system. There is an interaction between the boundary layer and highly oscillatory waves near the boundary, which is described by an initial-boundary value problem for a Poisson-Prandtl coupled system. Finally, by using the energy method and mode analysis, we obtain the well-posedness of this Poisson-Prandtl coupled problem, and a rigorous theory on the asymptotic analysis of the zero-viscosity limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscous potential flow

Potential flows u = ∇φ are solutions of the Navier–Stokes equations for viscous incompressible fluids for which the vorticity is identically zero. The viscous term μ∇u = μ∇∇φ vanishes, but the viscous contribution to the stress in an incompressible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity of a viscous fluid in potential flow away from the boundary layers e...

متن کامل

The Quasineutral Limit of Compressible Navier-stokes-poisson System with Heat Conductivity and General Initial Data

The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general (ill-prepared) initial data is rigorously proved in this paper. It is proved that, as the Debye length tends to zero, the solution of the compressible Navier-Stokes-Poisson system converges strongly to the strong solution of the incompressible Navier-Stokes equations plus a term of fast singul...

متن کامل

Vanishing Viscosity Limit to Rarefaction Waves for the Navier-Stokes Equations of One-Dimensional Compressible Heat-Conducting Fluids

We prove the solution of the Navier-Stokes equations for one-dimensional compressible heat-conducting fluids with centered rarefaction data of small strength exists globally in time, and moreover, as the viscosity and heat-conductivity coefficients tend to zero, the global solution converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly away from the i...

متن کامل

Boundary Layers for the Navier-Stokes Equations of Compressible Heat-Conducting Flows with Cylindrical Symmetry

We consider the Navier-Stokes equations for viscous compressible heat-conducting fluids with cylindrical symmetry. Our main purpose is to study the boundary layer effect and convergence rates as the shear viscosity μ goes to zero. We show that the boundary layer thickness and a convergence rate are of order O(μ) with 0 < α < 1/2 and O( √ μ) respectively, thus extending the result for isentropic...

متن کامل

Zero dissipation limit with two interacting shocks of the 1D non–isentropic Navier–Stokes equations

We investigate the zero dissipation limit problem of the one dimensional compressible non–isentropic Navier–Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is shown that the unique solution of the Navier–Stokes equations exists for all time, and converge to the Riemann solution of the corresponding Euler equations with the same Riemann initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2005