On skew loops, skew branes and quadratic hypersurfaces

نویسنده

  • Serge Tabachnikov
چکیده

A skew brane is an immersed codimension 2 submanifold in affine space, free from pairs of parallel tangent spaces. Using Morse theory, we prove that a skew brane cannot lie on a quadratic hypersurface. We also prove that there are no skew loops on embedded ruled developable discs in 3-space. MSC: 53A05, 53C50, 58E05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Furstenberg's Proof of the Infinitude of Primes

1. C. B. Boyer, History of Analytic Geometry, Scripta Mathematica, New York, 1956. 2. J. L. Coolidge, The origin of analytic geometry, Osiris 1 (1936) 231–250, also available at www.jstor. org. 3. M. Ghomi and B. Solomon, Skew loops and quadric surfaces, Comment. Math. Helv. 4 (2002) 767–782. 4. J.-P. Sha and B. Solomon, No skew branes on non-degenerate hyperquadrics, Math. Zeit. 257 (2002) 225...

متن کامل

Existence and non-existence of skew branes

A skew brane is a codimension 2 submanifold in affine space such that the tangent spaces at any two distinct points are not parallel. We show that if an oriented closed manifold has a non-zero Euler characteristic χ then it is not a skew brane; generically, the number of oppositely oriented pairs of parallel tangent spaces is not less than χ/4. We give a version of this result for immersed surf...

متن کامل

Convergence Properties of Hermitian and Skew Hermitian Splitting Methods

In this paper we consider the solutions of linear systems of saddle point problems‎. ‎By using the spectrum of a quadratic matrix polynomial‎, ‎we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method‎.

متن کامل

Skew Loops and Quadric Surfaces

A skew loop is a closed curve without parallel tangent lines. We prove: The only complete surfaces in R with a point of positive curvature and no skew loops are the quadrics. In particular: Ellipsoids are the only closed surfaces without skew loops. Our efforts also yield results about skew loops on cylinders and positively curved surfaces.

متن کامل

Comparing the Efficiency of Dmus with Normal and Skew-Normal Distribution using Data Envelopment Analysis

  Data envelopment analysis (DEA) is a nonparametric approach to evaluate theefficiency of decision making units (DMU) using mathematical programmingtechniques. Almost, all of the previous researches in stochastic DEA have been usedthe stochastic data when the inputs and outputs are normally distributed. But, thisassumption may not be true in practice. Therefore, using a normal distribution wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003