Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation.
نویسندگان
چکیده
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na(2)-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to approximately 35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.
منابع مشابه
Bacterial chemotaxis to atrazine and related s-triazines.
Pseudomonas sp. strain ADP utilizes the human-made s-triazine herbicide atrazine as the sole nitrogen source. The results reported here demonstrate that atrazine and the atrazine degradation intermediates N-isopropylammelide and cyanuric acid are chemoattractants for strain ADP. In addition, the nonmetabolized s-triazine ametryn was also an attractant. The chemotactic response to these s-triazi...
متن کاملNitrogen control of atrazine utilization in Pseudomonas sp. strain ADP.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on...
متن کاملInfluence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil.
The concentrations of atrazine in the freshly added soils and the soils that had been incubated for 50 days significantly decreased 1 day after the addition of the enzyme atrazine chlorohydrolase or the soil bacterium Pseudomonas sp. strain ADP as compared with those in the uninoculated soils. Atrazine chlorohydrolase or ADP had no effect on the degradation of metolachlor. The half-lives of atr...
متن کاملDraft Genome Sequence of Pseudomonas sp. Strain ADP, a Bacterial Model for Studying the Degradation of the Herbicide Atrazine
We report here the 7,259,392-bp draft genome of Pseudomonas sp. strain ADP. This is a bacterial strain that was first isolated in the 1990s from soil for its ability to mineralize the herbicide atrazine. It has extensively been studied as a model to understand the atrazine biodegradation pathway. This genome will be used as a reference and compared to evolved populations obtained by experimenta...
متن کاملThe atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP.
Pseudomonas sp. strain ADP initiates atrazine catabolism via three enzymatic steps, encoded by atzA, -B, and -C, which yield cyanuric acid, a nitrogen source for many bacteria. In-well lysis, Southern hybridization, and plasmid transfer studies indicated that the atzA, -B, and -C genes are localized on a 96-kb self-transmissible plasmid, pADP-1, in Pseudomonas sp. strain ADP. High-performance l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 4 شماره
صفحات -
تاریخ انتشار 2004