On certain sequences in Mordell–Weil type groups

نویسندگان

  • Stefan Barańczuk
  • STEFAN BARAŃCZUK
چکیده

In this paper we investigate divisibility properties of two families of sequences in the Mordell–Weil group of elliptic curves over number fields without complex multiplication. We also consider more general groups of Mordell–Weil type. M. Ward ([W], Theorem 1.) proved that a linear integral recurring sequence of order two which is not nontrivially degenerate has an infinite number of distinct prime divisors, where by a divisor of a sequence we mean a positive integer dividing some term of the sequence. Then L. Somer ([Som]) using a result by A. Schinzel ([Schi2]) determined those recurrences that have almost all primes as divisors. The general terms of nondegenerate linear recurring sequences of order two are of the form αA− βB and the general terms of trivially degenerate linear recurring sequences of order two are of the form α(A+ nB). In the present paper we investigate analogues of such sequences in Mordell–Weil group of elliptic curves: Let F be a number field, E/F an elliptic curve without complex multiplication, P,Q ∈ E(F ) and φ, ψ be isogenies (since we deal with curves without CM the isogenies are simply endomorphisms defined by the multiplication by rational integers; see Remark 5). We investigate sequences:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields

In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...

متن کامل

The Lehmer Inequality and the Mordell-weil Theorem for Drinfeld Modules

In this paper we prove several Lehmer type inequalities for Drinfeld modules which will enable us to prove certain Mordell-Weil type structure theorems for Drinfeld modules.

متن کامل

Visibility of Mordell-Weil Groups

We introduce a notion of visibility for Mordell-Weil groups, make a conjecture about visibility, and support it with theoretical evidence and data. These results shed new light on relations between Mordell-Weil and Shafarevich-Tate groups. 11G05, 11G10, 11G18, 11Y40

متن کامل

Supplementary Lecture Notes on Elliptic Curves

1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017