Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts.

نویسندگان

  • Donald A Robinson
  • Aditya M Kondajji
  • Alma D Castañeda
  • Radhika Dasari
  • Richard M Crooks
  • Keith J Stevenson
چکیده

Herein the problem of colloidal instability on electrochemically detected nanoparticle (NP) collisions with a Hg ultramicroelectrode (UME) by electrocatalytic amplification is addressed. NP tracking analysis (NTA) shows that rapid aggregation occurs in solution after diluting citrate-stabilized Pt NPs with hydrazine/phosphate buffers of net ionic strength greater than 70 mM. Colloidal stability improves by lowering the ionic strength, indicating that aggregation processes were strongly affected by charge screening of the NP double layer interactions at high cation concentrations. For the system of lowest ionic strength, the overwhelming majority of observed electrocatalytic current signals represent single NP/electrode impacts, as confirmed by NTA kinetic monitoring. NP diffusion coefficients determined by NTA and NP impact electroanalysis are in excellent agreement for the stable colloids, which signifies that the sticking probability of Pt NPs interacting with Hg is unity and that the observed NP impact rate agrees with the expected steady-state diffusive flux expression for the spherical cap Hg UME.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events† †Electronic supplementary information (ESI) available: Summary of previous studies; Ag NP characterization: TEM and DLS; event duration histogram; maximum current histogram. See DOI: 10.1039/c6sc04483b Click here for additional data file.

Single nanoparticle (NP) electrochemical impacts is a rapidly expanding field of fundamental electrochemistry, with applications from electrocatalysis to electroanalysis. These studies, which involve monitoring the electrochemical (usually current–time, I–t) response when a NP from solution impacts with a collector electrode, have the scope to provide considerable information on the properties ...

متن کامل

Producion of Nanoparticle Assemblies by Electro-Spraying and Freeze-Drying of Colloids: A New Method to Resolve Handling Problem of Nanoparticles

To resolve handling problem of nanoparticles, due to their small size, a new methodology of electro-spraying and freeze-drying was developed for colloidal nanoparticles of silica and titania to transform them to solid macro-scale nanoparticle assemblies.  The assemblies were then redispersed in an aqueous system to investigate the effect of formulation of original solutions and the process ...

متن کامل

Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four ...

متن کامل

Effect of Milling Process on Colloidal Stability, Color and Rheological Properties of Pistachio Paste

Pistachio paste is produced from ground roasted kernel. This study focused on the influence of the milling process on colloidal stability, rheological behavior and color of pistachio paste. The colloidal stability of pistachio paste samples increased with a reduction of particle size from 31.4 to 15.10µm. The Herschel-Bulkley model was found to be the best model to describe the flow behavior of...

متن کامل

Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro.

It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 7 13  شماره 

صفحات  -

تاریخ انتشار 2016