Perceptual harmonic cepstral coefficients for speech recognition in noisy environment

نویسندگان

  • Liang Gu
  • Kenneth Rose
چکیده

Perceptual harmonic cepstral coefficients (PHCC) are proposed as features to extract from speech for recognition in noisy environments. A weighting function, which depends on the prominence of the harmonic structure, is applied to the power spectrum to ensure accurate representation of the voiced speech spectral envelope. The harmonics weighted power spectrum undergoes mel-scaled band-pass filtering, and the log-energy of the filters’ output is discrete cosine transformed to produce cepstral coefficients. Lower spectral clipping is applied to the power spectrum, followed by within-filter root-power amplitude compression to reduce amplitude variation without compromise of the gain invariance properties. Experiments show significant recognition gains of PHCC over MFCC, with 23% and 36% error rate reduction for the Mandarin digit database in white and babble noise environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Split-band perceptual harmonic cepstral coefficients as acoustic features for speech recognition

This paper presents a significant modification of our previously proposed speech recognizer’s front-end based on perceptual harmonic cepstral coefficients. The spectrum is split into two frequency bands, which correspond to the harmonic and non-harmonic components. A weighting function, which depends both on the voiced/unvoiced/ transitional classification and on the prominence of harmonic stru...

متن کامل

Speech Recognition in Noisy Environment Using Different Feature Extraction Techniques

In this paper, different feature extraction methods for speech recognition system such as Melfrequency cepstral coefficients (MFCC), linear predictive coefficient cepstrum (LPCC) and Bark frequency cepstral coefficients (BFCC) are implemented and the comparison is done based on average recognition accuracy. We suggest a noise robust isolated word speech recognition system which can be applied i...

متن کامل

Perceptual harmonic cepstral coefficients as the front-end for speech recognition

Perceptual harmonic cepstral coefficients (PHCC) are proposed as features to extract for speech recognition. Pitch estimation and classification into voiced, unvoiced, and transitional speech are performed by a spectro-temporal auto-correlation technique. A peak picking algorithm is then employed to precisely locate pitch harmonics. A weighting function, which depends on the classification and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001