A non asymptotic variance theorem for unnormalized Feynman-Kac particle models

نویسندگان

  • Frédéric Cérou
  • Arnaud Guyader
  • Pierre Del Moral
چکیده

We present a non asymptotic theorem for interacting particle approximations of unnormalized Feynman-Kac models. We provide an original stochastic analysis based on Feynman-Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the L2relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first results of this type for this class of unnormalized models. We also illustrate these results in the context of particle simulation of static Boltzmann-Gibbs measures and restricted distributions, with a special interest in rare event analysis. Key-words: Interacting particle systems, Feynman-Kac semigroups, non asymptotic estimates, genetic algorithms, Boltzmann-Gibbs measures, Monte Carlo models, rare events The author names appear in alphabetical order. This work is supported in part by the French national programme “Securité ET INformatique” under project NEBBIANO, ANR-06-SETIN-009. ∗ Inria Rennes Bretagne Atlantique † Inria Bordeaux Sud Ouest ‡ Université de Haute Bretagne Rennes 2 in ria -0 03 37 39 2, v er si on 1 6 N ov 2 00 8 Théorème de variance non asymptotique pour des modèles particulaires de Feynman-Kac non normalisés Résumé : Nous présentons un théorème non asymptotique pour les approximation par systèmes de particules en interaction des modèles de Feynman-Kac non normalisés. Nous introduisons une analyse stochastique originale basée sur des techniques de semi-groupes de Feynman-Kac, associées avec les représentation, récemment proposées, des distributions de blocks de particules, en terme de développement en arbre de coalescence. Nous présentons des conditions de régularité sous lesquelles l’erreur relative L2 de ces mesures particulaires pondérées crôıt linéairement par rapport à l’horizon temporel, conduisant à ce qui semble être le premier résultat de ce type pour cette classe de modèles non normalisés. Nous illustrons ces résultats dans le contexte des mesures statiques de Boltzmann-Gibbs et des distributions restreintes, avec un intéret partuculier pour les événements rares. Mots-clés : Systèmes de particules en interaction, semi-groupes de FeynmanKac, estimées non asymptotiques, mesures de Boltzmann-Gibbs, modèles de Monte-Carlo, événements rares in ria -0 03 37 39 2, v er si on 1 6 N ov 2 00 8 Non asymptotic variance for unnormalized Feynman-Kac 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coalescent tree based functional representations for some Feynman - Kac particle models

We design a theoretic tree-based functional representation of a class of Feynman-Kac particle distributions, including an extension of the Wick product formula to interacting particle systems. These weak expansions rely on an original combinatorial, and permutation group analysis of a special class of forests. They provide refined non asymptotic propagation of chaos type properties, as well as ...

متن کامل

A Berry-Esseen theorem for Feynman-Kac and interacting particle models

In this paper we investigate the speed of convergence of the fluctuations of a general class of Feynman-Kac particle approximation models. We design an original approach based on new Berry-Esseen type estimates for abstract martingale sequences combined with original exponential concentration estimates of interacting processes. These results extend the corresponding statements in the classical ...

متن کامل

Sharp Propagation of Chaos Estimates for Feynman-kac Particle Models

This article is concerned with the propagation-of-chaos properties of genetic type particle models. This class of models arises in a variety of scientific disciplines including theoretical physics, macromolecular biology, engineering sciences, and more particularly in computational statistics and advanced signal processing. From the pure mathematical point of view, these interacting particle sy...

متن کامل

Convergence of U-statistics for interacting particle systems

The convergence of U -statistics has been intensively studied for estimators based on families of i.i.d. random variables and variants of them. In most cases, the independence assumption is crucial [Lee90, dlPG99]. When dealing with Feynman-Kac and other interacting particle systems of Monte Carlo type, one faces a new type of problem. Namely, in a sample of N particles obtained through the cor...

متن کامل

Conditional gauge theorem for non - local Feynman - Kac transforms

Feynman-Kac transforms driven by discontinuous additive functionals are studied in this paper for a large class of Markov processes. General gauge and conditional gauge theorems are established for such transforms. Furthermore, the L2-infinitesimal generator of the Schrödinger semigroup given by a non-local Feynman-Kac transform is determined in terms of its associated bilinear form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008