Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor.

نویسندگان

  • David Pantoja-Uceda
  • Joan L Arolas
  • Francesc X Aviles
  • Jorge Santoro
  • Salvador Ventura
  • Christian P Sommerhoff
چکیده

Protein folding mechanisms have remained elusive mainly because of the transient nature of intermediates. Leech-derived tryptase inhibitor (LDTI) is a Kazal-type serine proteinase inhibitor that is emerging as an attractive model for folding studies. It comprises 46 amino acid residues with three disulfide bonds, with one located inside a small triple-stranded antiparallel beta-sheet and with two involved in a cystine-stabilized alpha-helix, a motif that is widely distributed in bioactive peptides. Here, we analyzed the oxidative folding and reductive unfolding of LDTI by chromatographic and disulfide analyses of acid-trapped intermediates. It folds and unfolds, respectively, via sequential oxidation and reduction of the cysteine residues that give rise to a few 1- and 2-disulfide intermediates. Species containing two native disulfide bonds predominate during LDTI folding (IIa and IIc) and unfolding (IIa and IIb). Stop/go folding experiments demonstrate that only intermediate IIa is productive and oxidizes directly into the native form. The NMR structures of acid-trapped and further isolated IIa, IIb, and IIc reveal global folds similar to that of the native protein, including a native-like canonical inhibitory loop. Enzyme kinetics shows that both IIa and IIc are inhibitory-active, which may substantially reduce proteolysis of LDTI during its folding process. The results reported show that the kinetics of the folding reaction is modulated by the specific structural properties of the intermediates and together provide insights into the interdependence of conformational folding and the assembly of native disulfides during oxidative folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin.

The interaction of leech-derived tryptase inhibitor (LDTI) with bovine liver capsule tryptase (BLCT) and bovine trypsin has been studied using both thermodynamic and kinetic approaches. Several differences were detected: (i) the equilibrium affinity of LDTI for BLCT (Ka = 8.9 x 10(5) M(-1)) is about 600-fold lower than that for bovine trypsin (Ka = 5.1 x 10(8) M(-1)); (ii) LDTI behaves as a pur...

متن کامل

Role of kinetic intermediates in the folding of leech carboxypeptidase inhibitor.

The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native for...

متن کامل

Protease inhibitors as models for the study of oxidative folding.

The correct balance between proteases and their natural protein inhibitors is of great importance in living systems. Protease inhibitors usually comprise small folds that are crosslinked by a high number of disulfide bonds, making them perfect models for the study of oxidative folding. To date, the oxidative folding of numerous protease inhibitors has been analyzed, revealing a great diversity ...

متن کامل

Oxidative folding of hirudin in human serum.

Human serum contains factors that promote oxidative folding of disulphide proteins. We demonstrate this here using hirudin as a model. Hirudin is a leech-derived thrombin-specific inhibitor containing 65 amino acids and three disulphide bonds. Oxidative folding of hirudin in human serum is shown to involve an initial phase of rapid disulphide formation (oxidation) to form the scrambled isomers ...

متن کامل

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 51  شماره 

صفحات  -

تاریخ انتشار 2009