Genetically encoded chloride indicator with improved sensitivity.
نویسندگان
چکیده
Chloride (Cl) is the most abundant physiological anion. Abnormalities in Cl regulation are instrumental in the development of several important diseases including motor disorders and epilepsy. Because of difficulties in the spectroscopic measurement of Cl in live tissues there is little knowledge available regarding the mechanisms of regulation of intracellular Cl concentration. Several years ago, a CFP-YFP based ratiometric Cl indicator (Clomeleon) was introduced [Kuner, T., Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 2000; 27: 447-59]. This construct with relatively low sensitivity to Cl (K(app) approximately 160 mM) allows ratiometric monitoring of Cl using fluorescence emission ratio. Here, we propose a new CFP-YFP-based construct (Cl-sensor) with relatively high sensitivity to Cl (K(app) approximately 30 mM) due to triple YFP mutant. The construct also exhibits good pH sensitivity with pK(alpha) ranging from 7.1 to 8.0 pH units at different Cl concentrations. Using Cl-sensor we determined non-invasively the distribution of [Cl](i) in cultured CHO cells, in neurons of primary hippocampal cultures and in photoreceptors of rat retina. This genetically encoded indicator offers a means for monitoring Cl and pH under different physiological conditions and high-throughput screening of pharmacological agents.
منابع مشابه
A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons
We constructed a novel optical indicator for chloride ions by fusing the chloride-sensitive yellow fluorescent protein with the chloride-insensitive cyan fluorescent protein. The ratio of FRET-dependent emission of these fluorophores varied in proportion to the concentration of Cl and was used to measure intracellular chloride concentration ([Cl-]i) in cultured hippocampal neurons. [Cl-]i decre...
متن کاملGenetically Encoded Optical Sensors for Monitoring of Intracellular Chloride and Chloride-Selective Channel Activity
This review briefly discusses the main approaches for monitoring chloride (Cl(-)), the most abundant physiological anion. Noninvasive monitoring of intracellular Cl(-) ([Cl(-)]i) is a challenging task owing to two main difficulties: (i) the low transmembrane ratio for Cl(-), approximately 10:1; and (ii) the small driving force for Cl(-), as the Cl(-) reversal potential (E(Cl)) is usually close ...
متن کاملReducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications.
Yellow mutants of the green fluorescent protein (YFP) are crucial constituents of genetically encoded indicators of signal transduction and fusions to monitor protein-protein interactions. However, previous YFPs show excessive pH sensitivity, chloride interference, poor photostability, or poor expression at 37 degrees C. Protein evolution in Escherichia coli has produced a new YFP named Citrine...
متن کاملChronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator.
In vivo optical imaging can reveal the dynamics of large-scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long-term investigation of cortical map dynamics using wide-field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide-field GECI signals report sensory-evoked acti...
متن کاملA Genetically-Encoded YFP Sensor with Enhanced Chloride Sensitivity, Photostability and Reduced pH Interference Demonstrates Augmented Transmembrane Chloride Movement by Gerbil Prestin (SLC26a5)
BACKGROUND Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measureme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 170 1 شماره
صفحات -
تاریخ انتشار 2008