New Test Pattern Generators for the BIST Pseudo-Exhaustive Testing based on Coding Theory Principles

نویسندگان

  • Mohamed H. El-Mahlawy
  • Winston Waller
چکیده

In this paper, an efficient algorithm to design convolved LFSR/SR (Linear Feedback Shift Register / Shift Register) for the pseudo-exhaustive testing (PET) is presented as far as the lengths of the test set and hardware overhead are concerning. In this algorithm, an efficient search to reduce the constraint in the size of the shift register (SR) segment and makes an efficient search to restrict on the number of feed forward stages into two stages at most and no restriction on the size of the SR segment. The residues are assigned such that minimum hardware overhead is achieved. This search generates several possible solutions for each case, from which the minimal hardware solutions may be chosen. In addition, a new test pattern generator (TPG) for the PET that bridges the gap between convolved LFSR/SR and permuted LFSR/SR is presented. It is considered to be the optimal pseudoexhaustive test pattern generator (PETPG) as far as the lengths of the test set and hardware overhead are concerning. An efficient residue assignment for the inputs of the CUT to reduce the hardware overhead is presented. With small number of permutations in the assigned residues, the chance of obtaining efficient solutions may be increased. The presented generator in this paper is considered the general form of the PETPG. The simple LFSR/SR, the permuted LFSR/SR, and convolved LFSR/SR are considered the special case. The experimental results for all combinational benchmark circuits [1] indicate the superiority of the presented approach with respect to previous published works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Generic and Recursive Pseudo Exhaustive Two-Pattern Generator

The main objective of this research is to design a Built-in self-test (BIST) technique based on pseudo-exhaustive testing. Two pattern test generator is used to provide high fault coverage. To provides fault coverage of detectable combinational faults with minimum number of test patterns than the conventional exhaustive test pattern generation, increases the speed of BIST and may posses minimum...

متن کامل

Using GLFSRs for Pseudo-Random Memory BIST

In this work, we present the application of Generalized Linear Feedback Shift Registers (GLFSRs) for generation of patterns for pseudo-random memory Built-In SelfTest (BIST). Recently, it was shown that using GLFSRs as pattern generators for pseudo-random logic tests can increase the fault coverage noticeably in comparison to standard pseudo-random test pattern generators. Since memory faults d...

متن کامل

Column-matching based mixed-mode test pattern generator design technique for BIST

A novel test-per-clock built-in self-test (BIST) equipment design method for combinational or full-scan sequential circuits is proposed in this paper. Particularly, the test pattern generator is being designed. The method is based on similar principles as are well known test pattern generator design methods, like bit-fixing and bit-flipping. The novelty comprises in proposing a brand new algori...

متن کامل

Strategies and Techniques for Optimizing Power in BIST: A Review

Power dissipation is a challenging problem in current VLSI designs. In general the power consumption of device is more in the testing mode than in the normal system operation. Built in self test (BIST) and scan-based BIST are the techniques used for testing and detecting the faulty components in the VLSI circuit. Linear Feedback Shift Register (LFSR) in BIST generates pseudo-random patterns for...

متن کامل

Vlsi Design of Efficient Architecture in Recursive Pseudo-exhaustive Two-pattern Generation

The aim of built in self-test is to make the machine to test by itself. The best method among the built in self-test is pseudo exhaustive two pattern generation produces the output according to the input given with 16bit generator. The main drawback that occurs in this test pattern generation is maximum delay. It occurs in the carry generator module. In this paper, the method proposed with recu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016