Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and by preventing the ubiquitination and degradation of p53.
نویسندگان
چکیده
In the present study, we observed that the Golgi-SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) GS28 forms a complex with p53 in HEK (human embryonic kidney)-293 cells. Given that p53 represents a tumour suppressor that affects the sensitivity of cancer cells to various chemotherapeutic drugs, we examined whether GS28 may influence the level of sensitivity to the DNA-damaging drug cisplatin. Indeed, knockdown of GS28 using short-hairpin RNA (shGS28) induced resistance to cisplatin in HEK-293 cells. On the other hand, overexpression of GS28 sensitized HEK-293 cells to cisplatin, whereas no sensitization effect was noted for the mitotic spindle-damaging drugs vincristine and taxol. Accordingly, we observed that knockdown of GS28 reduced the accumulation of p53 and its pro-apoptotic target Bax. Conversely, GS28 overexpression induced the accumulation of p53 and Bax as well as the pro-apoptotic phosphorylation of p53 on Ser(46). Further experiments showed that these cellular responses could be abrogated by the p53 inhibitor PFT-α (pifithrin-α), indicating that GS28 may affect the stability and activity of p53. The modulatory effects of GS28 on cisplatin sensitivity and p53 stability were absent in lung cancer H1299 cells which are p53-null. As expected, ectopic expression of p53 in H1299 cells restored the modulatory effects of GS28 on sensitivity to cisplatin. In addition, GS28 was found to form a complex with the p53 E3 ligase MDM2 (murine double minute 2) in H1299 cells. Furthermore, the ubiquitination of p53 was reduced by overexpression of GS28 in cells, confirming that GS28 enhances the stability of the p53 protein. Taken together, these results suggest that GS28 may potentiate cells to DNA-damage-induced apoptosis by inhibiting the ubiquitination and degradation of p53.
منابع مشابه
Nuclear Expression of GS28 Protein: A Novel Biomarker that Predicts Worse Prognosis in Cervical Cancers
OBJECTIVE The protein GS28 (28-kDa Golgi SNARE protein) has been described as a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family member that plays a critical role in mammalian ER-Golgi or intra-Golgi vesicle transport. Little is known about the possible roles of GS28 in pathological conditions. The purpose of this study was to evaluate GS28 expressio...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملInsulin Receptor Tyrosine Kinase Substrate Enhances Low Levels of MDM2-Mediated p53 Ubiquitination
The tumor suppressor p53 controls multiple cellular functions including DNA repair, cell cycle arrest and apoptosis. MDM2-mediated p53 ubiquitination affects both degradation and cytoplasmic localization of p53. Several cofactors are known to modulate MDM2-mediated p53 ubiquitination and proteasomal degradation. Here we show that IRTKS, a novel IRSp53-like protein inhibited p53-induced apoptosi...
متن کاملNuclear Expression of GS28 Protein: A Novel Biomarker that Predicts Prognosis in Colorectal Cancers
Aims: GS28 (Golgi SNARE protein, 28 kDa), a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) protein family, plays a critical role in mammalian endoplasmic reticulum (ER)-Golgi or intra-Golgi vesicle transport. To date, few researches on the GS28 protein in human cancer tissues have been reported. In this study, we assessed the prognostic value of GS2...
متن کاملPIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination
Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of canc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 444 2 شماره
صفحات -
تاریخ انتشار 2012