Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs

نویسندگان

  • Richard Garner
  • Tom Hirschowitz
  • Aurélien Pardon
چکیده

This paper investigates the use of symmetric monoidal closed (smc) structure for representing syntax with variable binding, in particular for languages with linear aspects. In this setting, one first specifies an smc theory T , which may express binding operations, in a way reminiscent from higher-order abstract syntax (hoas). This theory generates an smc category S(T ) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner’s (abstract binding) bigraphs, in which processes behave linearly, but names do not. This leads to an alternative category of bigraphs, which we compare to the original.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding bigraphs as symmetric monoidal closed theories

We reconstruct Milner’s [1] category of abstract binding bigraphs Bbg(K) over a signature K as the free (or initial) symmetric monoidal closed (smc) category S(TK) generated by a derived theory TK. The morphisms of S(TK) are essentially proof nets from the Intuitionistic Multiplicative fragment (imll) of Linear Logic [2]. Formally, we construct a faithful, essentially injective on objects funct...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Graphical Presentations of Symmetric Monoidal Closed Theories

We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.

متن کامل

Higher-order Contexts via Games and the Int-construction

Monoidal categories of acyclic graphs capture the notion of multihole context, pervasive in syntax and semantics. Milner’s bigraphs is a recent example. We give a method for generalising such categories to monoidal closed categories of acyclic graphs. The method combines the Int-construction, lifting traced monoidal categories to compact closed ones; the recent formulation of sortings for react...

متن کامل

On Hierarchical Graphs: Reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs

Compositional graph models for global computing systems must account for two relevant dimensions, namely nesting and linking. In Milner’s bigraphs the two dimensions are made explicit and represented as loosely coupled structures: the place graph and the link graph. Here, bigraphs are compared with an earlier model, gs-graphs, based on gs-monoidal theories and originally conceived for modelling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009