The Plastid Genome of Najas flexilis: Adaptation to Submersed Environments Is Accompanied by the Complete Loss of the NDH Complex in an Aquatic Angiosperm
نویسندگان
چکیده
The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas), the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) from the small single copy (SSC) regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(P)H dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms.
منابع مشابه
Through thick and thin: cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae).
Cryptic sympatric species arise when reproductive isolation is established in sympatry, leading to genetically divergent lineages that are highly similar morphologically or virtually indistinguishable. Although cryptic sympatric species have been reported in various animals, fungi, and protists, there are few compelling examples for plants. This investigation presents a case for cryptic sympatr...
متن کاملExceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat.
UNLABELLED • PREMISE OF THE STUDY Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.• METHODS Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plast...
متن کاملThe Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome ...
متن کاملEvolutionary reversion of editing sites of ndh genes suggests their origin in the Permian-Triassic, before the increase of atmospheric CO2
The plastid ndh genes have hovered frequently on the edge of dispensability. They are absent in the plastid DNA of many algae and certain higher plants and present editing sites requiring C-to-U corrections of primary transcripts. The evolutionary origin of editing sites and their loss due to C-to-T reversions at the DNA level are unknown and must be related to the dispensability of the ndh gen...
متن کاملNew subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants.
In higher plants, the Ndh complex reduces plastoquinones and is involved in cyclic electron flow around photosystem I, supplying extra-ATP for photosynthesis, particularly under environmental stress conditions. Based on plastid genome sequences, the Ndh complex would contain 11 subunits (NDH-A to -K), but homologies with bacterial complex indicate the probable existence of additional subunits. ...
متن کامل