Generic Picard-vessiot Extensions and Generic Equations

نویسندگان

  • LOURDES JUAN
  • ANDY MAGID
چکیده

The notion of a generic Picard-Vessiot extension with group G is equivalent to that of a generic linear differential equation for the same group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Rings for Picard–Vessiot Extensions and Generic Differential Equations

Let G be an observable subgroup of GLn. We produce an extension of differential commutative rings generic for Picard–Vessiot extensions with

متن کامل

Generic Picard-vessiot Extensions for Connected-by-finite Groups

We construct generic Picard-Vessiot extensions for linear algebraic groups which are isomorphic to the semidirect product of a connected group G by an arbitrary finite group H, where the adjoint H-action on the Lie algebra of G is faithful.

متن کامل

Generic Picard-vessiot Extensions for Non-connected Groups

Abstract. Let K be a differential field with algebraically closed field of constants C and G a linear algebraic group over C. We provide a characterization of the K-irreducible G-torsors for nonconnected groups G in terms of the first Galois cohomology H(K, G) and use it to construct Picard-Vessiot extensions which correspond to non-trivial torsors for the infinite quaternion group, the infinit...

متن کامل

On Picard–Vessiot extensions with group PGL3

Let F be a differential field of characteristic zero with algebraically closed field of constants. We provide an explicit description of the twisted Lie algebras of PGL3-equivariant derivations on the coordinate rings of F -irreducible PGL3-torsors in terms of nine-dimensional central simple algebras over F . We use this to construct a Picard–Vessiot extension which is the function field of a n...

متن کامل

ON GENERIC DIFFERENTIAL SOn-EXTENSIONS

Let C be an algebraically closed field with trivial derivation and let F denote the differential rational field C〈Yij〉, with Yij , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, i ≤ j, differentially independent over C. We show that there is a Picard-Vessiot extension E ⊃ F for a matrix equation X ′ = XA(Yij), with differential Galois group SOn, with the property that if F is any differential field with field of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005