Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction.
نویسندگان
چکیده
Trends in oxygen reduction activity of Pd/Cu bimetallic random alloy nanoparticles are determined with calculations of oxygen binding for a range of compositions. A reduction in the average oxygen binding is found as Cu is added to Pd, indicating an increase in catalytic activity up to a peak at 1:1 Pd/Cu ratio. Calculations show that Cu reduces the Pd-O binding energy and Pd increases the Cu-O binding energy. These changes are understood in terms of charge transfer from Pd to Cu, lowering the d-band center of Pd and raising that of Cu. The peak in activity occurs because these two effects not equivalent. A greater overlap between the d-states of Pd and the adsorbed oxygen makes the reduction in binding at Pd more significant than the increase in binding at Cu. We present a simple model of the average binding energy that can generally predict activity trends in random alloys.
منابع مشابه
Correction to "Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction".
متن کامل
Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores
Pd-based nanoparticles are promising candidates for non-Pt catalysts of the oxygen reduction reaction (ORR). Trends in ORR activity of Pd/Cu-alloy-core@Pd-shell nanoparticles are studied by calculating the oxygen binding energy on the Pd surface with different Cu compositions in the alloy core. Density functional theory calculations show that several properties of the nanoparticle surface, incl...
متن کاملCore-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions
Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shell...
متن کاملCage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy star...
متن کاملPt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation
First principles approach is used to examine geometric and electronic structure of the catalyst concept aimed to improve activity and utilization of precious Pt metal for oxygen reduction reaction in fuel cells. The Pt monolayers on Pd skin and Pd1−xCux inner core for various compositions x were examined by building the appropriate models starting from Pd-Cu solid solution. We provided a detail...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 2 11 شماره
صفحات -
تاریخ انتشار 2011