Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes

نویسندگان

  • Juan Cheng
  • Chi-Wang Shu
چکیده

In [14], Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates. These schemes use a node-based discretization of the numerical fluxes. The control volume version has several distinguished properties, including the conservation of mass, momentum and total energy and compatibility with the geometric conservation law (GCL). However it also has a limitation in that it cannot preserve spherical symmetry for one-dimensional spherical flow. An alternative is also given to use the first order area-weighted approach which can ensure spherical symmetry, at the price of sacrificing conservation of momentum. In this paper, we apply the methodology proposed in our recent work [8] to the first order control volume scheme of Maire in [14] to obtain the spherical symmetry property. The modified scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid, and meanwhile it maintains its original good properties such as conservation and GCL. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of symmetry, non-oscillation and robustness properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates

In applications such as astrophysics and inertial confine fusion, there are many threedimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep the spherical symmetry in the cylindrical coordinate system if the original physic...

متن کامل

A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry

We develop a new cell-centered control volume Lagrangian scheme for solving Euler equations of compressible gas dynamics in cylindrical coordinates. Based on a local coordinate transform strategy, the scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. Unlike many previous area weighted schemes that...

متن کامل

Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates

For a Lagrangian scheme defined in the cylindrical coordinates, two important issues are whether the scheme can maintain spherical symmetry (symmetry-preserving) and whether the scheme can maintain positivity of density and internal energy (positivity-preserving). While there were previous results in the literature either for symmetry-preserving in the cylindrical coordinates or for positivity-...

متن کامل

A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry

The goal of this paper is to present high-order cell-centered schemes for solving the equations of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretization of the numerical fluxes is obtained through the computation of the time rate of change of the cell volume. It allows to derive finite volume numerical schemes that are compatible with the geometric conservation la...

متن کامل

High order schemes for cylindrical/spherical coordinates with radial symmetry

In this paper, we implement finite volume Weighted Essentially Non-Oscillatory (WENO) schemes in both cylindrical and spherical coordinate systems for the Euler equations with cylindrical or spherical symmetry. We analyze three different spatial discretizations: one that is shown to be high-order accurate but not conservative, one conservative but not high-order accurate, and one both high-orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010