Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model

نویسندگان

  • Raymond Kao
  • Anargyros Xenocostas
  • Tao Rui
  • Pei Yu
  • Weixiong Huang
  • James Rose
  • Claudio M Martin
چکیده

INTRODUCTION The relationship between oxygen delivery and consumption in sepsis is impaired, suggesting a microcirculatory perfusion defect. Recombinant human erythropoietin (rHuEPO) regulates erythropoiesis and also exerts complex actions promoting the maintenance of homeostasis of the organism under stress. The objective of this study was to test the hypothesis that rHuEPO could improve skeletal muscle capillary perfusion and tissue oxygenation in sepsis. METHODS Septic mice in three experiments received rHu-EPO 400 U/kg subcutaneously 18 hours after cecal ligation and perforation (CLP). The first experiment measured the acute effects of rHuEPO on hemodynamics, blood counts, and arterial lactate level. The next two sets of experiments used intravital microscopy to observe capillary perfusion and nicotinamide adenine dinucleotide (NADH) fluorescence post-CLP after treatment with rHuEPO every 10 minutes for 40 minutes and at 6 hours. Perfused capillary density during a three-minute observation period and NADH fluorescence were measured. RESULTS rHuEPO did not have any effects on blood pressure, lactate level, or blood cell numbers. CLP mice demonstrated a 22% decrease in perfused capillary density compared to the sham group (28.5 versus 36.6 capillaries per millimeter; p < 0.001). Treatment of CLP mice with rHuEPO resulted in an immediate and significant increase in perfused capillaries in the CLP group at all time points compared to baseline from 28.5 to 33.6 capillaries per millimeter at 40 minutes; p < 0.001. A significant increase in baseline NADH, suggesting tissue hypoxia, was noted in the CLP mice compared to the sham group (48.3 versus 43.9 fluorescence units [FU]; p = 0.03) and improved with rHuEPO from 48.3 to 44.4 FU at 40 minutes (p = 0.02). Six hours after treatment with rHuEPO, CLP mice demonstrated a higher mean perfused capillary density (39.4 versus 31.7 capillaries per millimeter; p < 0.001) and a lower mean NADH fluorescence as compared to CLP+normal saline mice (49.4 versus 52.7 FU; p = 0.03). CONCLUSION rHuEPO produced an immediate increase in capillary perfusion and decrease in NADH fluorescence in skeletal muscle. Thus, it appears that rHuEPO improves tissue bioenergetics, which is sustained for at least six hours in this murine sepsis model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioenergetics of the Calf Muscle in Friedreich Ataxia Patients Measured by 31P-MRS Before and After Treatment with Recombinant Human Erythropoietin

UNLABELLED Friedreich ataxia (FRDA) is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO) is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of ske...

متن کامل

CALL FOR PAPERS Mitochondrial Dynamics and Oxidative Stress Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis

Zolfaghari PS, Carré JE, Parker N, Curtin NA, Duchen MR, Singer M. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am J Physiol Endocrinol Metab 308: E713–E725, 2015. First published February 24, 2015; doi:10.1152/ajpendo.00562.2014.—Muscle dysfunction is a common feature of severe sepsis and multiorgan failu...

متن کامل

Skeletal muscle dysfunction is associated with derangements in mitochondrial 1 bioenergetics ( but not UCP 3 ) in a rodent model of sepsis 2 3

Skeletal muscle dysfunction is associated with derangements in mitochondrial 1 bioenergetics (but not UCP3) in a rodent model of sepsis 2 3 Parjam Zolfaghari, Jane E Carré, Nadeene Parker, Nancy A Curtin, Michael R Duchen, 4 Mervyn Singer. 5 1 Bloomsbury Institute for Intensive Care Medicine, University College London, Cruciform 6 Building, Gower Street, London WC1E 6BT, UK 7 2 National Heart a...

متن کامل

Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis

INTRODUCTION Severe sepsis is characterised by intravascular or extravascular infection with microbial agents, systemic inflammation and microcirculatory dysfunction, leading to tissue damage, organ failure and death. The growth factor angiopoietin (Ang-1) has therapeutic potential but recombinant Ang-1 tends to aggregate and has a short half-life in vivo. This study aimed to investigate the ac...

متن کامل

Impact of Incremental Perfusion Loss on Oxygen Transport in a Capillary Network Mathematical Model.

OBJECTIVES To quantify how incremental capillary PL, such as that seen in experimental models of sepsis, affects tissue oxygenation using a computation model of oxygen transport. METHODS A computational model was applied to capillary networks with dimensions 84 × 168 × 342 (NI) and 70 × 157 × 268 (NII) μm, reconstructed in vivo from rat skeletal muscle. FCD loss was applied incrementally up t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Critical Care

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2007