3D Shape Segmentation and Labeling via Extreme Learning Machine

نویسندگان

  • Zhige Xie
  • Kai Xu
  • Ligang Liu
  • Yueshan Xiong
چکیده

We propose a fast method for 3D shape segmentation and labeling via Extreme Learning Machine (ELM). Given a set of example shapes with labeled segmentation, we train an ELM classifier and use it to produce initial segmentation for test shapes. Based on the initial segmentation, we compute the final smooth segmentation through a graph-cut optimization constrained by the super-face boundaries obtained by over-segmentation and the active contours computed from ELM segmentation. Experimental results show that our method achieves comparable results against the state-of-the-arts, but reduces the training time by approximately two orders of magnitude, both for face-level and super-face-level, making it scale well for large datasets. Based on such notable improvement, we demonstrate the application of our method for fast online sequential learning for 3D shape segmentation at face level, as well as realtime sequential learning at super-face level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learned versus Hand-Designed Feature Representations for 3d Agglomeration

For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains ...

متن کامل

A Simple and Effective Closed Test for Chinese Word Segmentation Based on Sequence Labeling

In many Chinese text processing tasks, Chinese word segmentation is a vital and required step. Various methods have been proposed to address this problem using machine learning algorithm in previous studies. In order to achieve high performance, many studies used external resources and combined with various machine learning algorithms to help segmentation. The goal of this paper is to construct...

متن کامل

Simulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine

In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...

متن کامل

Representation, Segmentation and Matching of 3D Visual Shapes using Graph Laplacian and Heat-Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

Matching of 3 D Visual Shapes using Graph Laplacian and Heat - Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2014