Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms.

نویسندگان

  • Fumihiro Kato
  • Takayuki Hishiki
چکیده

Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replicon cell culture system as a valuable tool in antiviral drug discovery against hepatitis C virus.

Discovery of potential therapeutics against hepatitis C virus (HCV) infection has been hampered in the past decade by the inability to grow this virus in tissue culture and by the lack of robust small animal models. This situation has been improved by the recent development of a selectable HCV replicon cell culture system. For the first time, drug discovery scientists are able to screen large c...

متن کامل

Novel hepatitis C virus reporter replicon cell lines enable efficient antiviral screening against genotype 1a.

The hepatitis C virus (HCV) subgenomic replicon is the primary tool for evaluating the activity of anti-HCV compounds in drug discovery research. Despite the prevalence of HCV genotype 1a (approximately 70% of U.S. HCV patients), few genotype 1a reporter replicon cell lines have been described; this is presumably due to the low replication capacity of such constructs in available Huh-7 cells. I...

متن کامل

Construction of a dengue virus type 4 reporter replicon and analysis of temperature-sensitive mutations in non-structural proteins 3 and 5

Replicon systems have been useful to study mechanisms of translation and replication of flavivirus RNAs. In this study, we constructed a dengue virus 4 replicon encoding a Renilla luciferase (R(luc)) reporter, and six single-residue substitution mutants were generated: L128F and S158P in the non-structural protein (NS) 3 protease domain gene, and N96I, N390A, K437R and M805I in the NS5 gene. Th...

متن کامل

High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease.

The mosquito-borne dengue virus serotypes 1-4 (DENV1-4) and West Nile virus (WNV) cause serious illnesses worldwide associated with considerable morbidity and mortality. According to the World Health Organization (WHO) estimates, there are about 390 million infections every year leading to ∼500,000 dengue haemorrhagic fever (DHF) cases and ∼25,000 deaths, mostly among children. Antiviral therap...

متن کامل

Potential high-throughput assay for screening inhibitors of West Nile virus replication.

Prevention and treatment of infection by West Nile virus (WNV) and other flaviviruses are public health priorities. We describe a reporting cell line that can be used for high-throughput screening of inhibitors against all targets involved in WNV replication. Dual reporter genes, encoding Renilla luciferase (Rluc) and neomycin phosphotransferase (Neo), were engineered into a WNV subgenomic repl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Viruses

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016