Gentle, fast and effective crystal soaking by acoustic dispensing
نویسندگان
چکیده
The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.
منابع مشابه
A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملEnzyme microarrays assembled by acoustic dispensing technology.
Miniaturizing bioassays to the nanoliter scale for high-throughput screening reduces the consumption of reagents that are expensive or difficult to handle. Through the use of acoustic dispensing technology, nanodroplets containing 10 microM ATP (3 microCi/microL (32)P) and reaction buffer in 10% glycerol were positionally dispensed to the surface of glass slides to form 40-nL compartments (100 ...
متن کاملDispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses
Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data...
متن کاملبررسی کوپلینگ پیزوالکتریکی و آنیزتروپی بر انتشار امواج صوتی در بلوره صوتی لیتیوم نیوباته
The acoustic wave velocity depends on elasticity and density at most materials, but because of anisotropy and especially piezoelectric coupling effect, the acoustic wave propagation at piezoelectric based crystalloacoustic materials, is an applied and challenging problem. In this paper, using modified Christoffel's equation based on group velocity concept, the effect of anisotropy and piezoelec...
متن کاملFlexural monitoring of carbon fiber/epoxy composite by acoustic emission
Carbon / epoxy composite is one of the most useful polymer matrix composites that has special properties such as high strength-to-weight ratio, high hardness, high corrosion resistance, Resistance to nuclear radiation has high consumption in different industries such as aerospace industry. Therefor monitoring of loading of this type of composite is important. In order to determine failure mecha...
متن کامل