Following during physically-coupled joint action engages motion area MT+/V5.
نویسندگان
چکیده
Interpersonal coordination during joint action depends on the perception of the partner's movements. In many such situations - for example, while moving furniture together or dancing a tango - there are kinesthetic interactions between the partners due to the forces shared between them that allow them to directly perceive one another's movements. Joint action of this type often involves a contrast between the roles of leader and follower, where the leader imparts forces onto the follower, and the follower has to be responsive to these force-cues during movement. We carried out a novel 2-person functional MRI study with trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, where the two alternated between being the leader and follower of joint improvised movements, all with the eyes closed. One brain area that was unexpectedly more active during following than leading was the region of MT+/V5. While classically described as an area for processing visual motion, it has more recently been shown to be responsive to tactile motion as well. We suggest that MT+/V5 responds to motion based on force-cues during joint haptic interaction, most especially when a follower responds to force-cues coming from a leader's movements.
منابع مشابه
Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5.
As stimulus size increases, motion direction of high-contrast patterns becomes increasingly harder to perceive. This counterintuitive behavioral result, termed "spatial suppression," is hypothesized to reflect center-surround antagonism-a receptive field property ubiquitous in sensory systems. Prior research proposed that spatial suppression of motion signals is a direct correlate of center-sur...
متن کاملClose correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect
Studies in primate physiology and human functional neuroimaging have convincingly shown that the area of the brain termed MT/V5(+)-which includes the middle temporal visual area MT/V5 along with adjacent motion-sensitive areas such as MST--is involved in the processing of motion information [1,2]. Tootell et al. [3] showed that the blood oxygenation level dependent (BOLD) signal measured by fun...
متن کاملThe role of V5/MT+ in the control of catching movements: an rTMS study.
Milner and Goodale described a model which distinguishes between two visual streams in the brain. It is claimed that the ventral stream serves object recognition (i.e. vision for perception), and the dorsal streams provides visual information for the guidance of action (i.e. vision for action). This model is supported by evidence from the domain of spatial vision, but it remains unclear how mot...
متن کاملOp-brai140329 164..178
Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently kno...
متن کاملThe retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors.
Although there is general agreement that the human middle temporal (MT)/V5+ complex corresponds to monkey area MT/V5 proper plus a number of neighboring motion-sensitive areas, the identification of human MT/V5 within the complex has proven difficult. Here, we have used functional magnetic resonance imaging and the retinotopic mapping technique, which has very recently disclosed the organizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of integrative neuroscience
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2017