Genetic dissection of anterior segment dysgenesis caused by a Col4a1 mutation in mouse
نویسندگان
چکیده
Ocular anterior segment dysgenesis (ASD) describes a spectrum of clinically and genetically heterogeneous congenital disorders affecting anterior structures that often lead to impaired vision. More importantly, 50-75% of patients with ASD develop early onset and aggressive glaucoma. Although several genes have been implicated in the etiology of ASD, the underlying mechanisms remain elusive. Type IV collagen alpha 1 (COL4A1) is an extracellular matrix protein and a critical component of nearly all basement membranes. COL4A1 mutations cause multi-system disorders in patients, including ASD (congenital cataracts, Axenfeld-Rieger's anomaly, Peter's anomaly and microphthalmia) and congenital or juvenile glaucoma. Here, we use a conditional Col4a1 mutation in mice to determine the location and timing of pathogenic events underlying COL4A1-related ocular dysgenesis. Our results suggest that selective expression of the Col4a1 mutation in neural crest cells and their derivatives is not sufficient to cause ocular dysgenesis and that selective expression of the Col4a1 mutation in vascular endothelial cells can lead to mild ASD and optic nerve hypoplasia but only on a sensitized background. In contrast, lens-specific expression of the conditional Col4a1 mutant allele led to cataracts, mild ASD and optic nerve hypoplasia, and age-related intraocular pressure dysregulation and optic nerve damage. Finally, ubiquitous expression of the conditional Col4a1 mutation at distinct developmental stages suggests that pathogenesis takes place before E12.5. Our results show that the lens and possibly vasculature play important roles in Col4a1-related ASD and that the pathogenic events occur at mid-embryogenesis in mice, during early stages of ocular development.
منابع مشابه
Col4a1 mutations cause progressive retinal neovascular defects and retinopathy
Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in v...
متن کاملAllelic heterogeneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by Col4a1 and Col4a2 mutations
Collagen type IV alpha 1 and 2 (COL4A1 and COL4A2) are present in nearly all basement membranes. COL4A1 and COL4A2 mutations are pleiotropic, affecting multiple organ systems to differing degrees, and both genetic-context and environmental factors influence this variable expressivity. Here, we report important phenotypic and molecular differences in an allelic series of Col4a1 and Col4a2 mutant...
متن کاملDominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy.
Members of the type IV collagen family are essential components of all basement membranes (BMs) and define structural stability as well as tissue-specific functions. The major isoform, alpha1.alpha1.alpha2(IV), contributes to the formation of many BMs and its deficiency causes embryonic lethality in mouse. We have identified an allelic series of three ENU induced dominant mouse mutants with mis...
متن کاملNovel mutation in FOXC1 wing region causing Axenfeld-Rieger anomaly.
PURPOSE To determine the possible molecular genetic defect underlying Axenfeld-Rieger anomaly (ARA) and to identify the pathogenic mutation causing this anterior segment dysgenesis in an Indian pedigree. METHODS The FOXC1 gene was amplified from genomic DNA of members of an ARA-affected family and control subjects using four novel sets of primers. The amplicons were directly sequenced, and th...
متن کاملCOL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans
Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene codi...
متن کامل