Inferring Gene Dependency Networks from Genomic Longitudinal Data: a Functional Data Approach

نویسندگان

  • Rainer Opgen-Rhein
  • Korbinian Strimmer
چکیده

• A key aim of systems biology is to unravel the regulatory interactions among genes and gene products in a cell. Here we investigate a graphical model that treats the observed gene expression over time as realizations of random curves. This approach is centered around an estimator of dynamical pairwise correlation that takes account of the functional nature of the observed data. This allows to extend the graphical Gaussian modeling framework from i.i.d. data to analyze longitudinal genomic data. The new method is illustrated by analyzing highly replicated data from a genome experiment concerning the expression response of human T-cells to PMA and ionomicin treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small-Sample Analysis and Inference of Networked Dependency Structures from Complex Genomic Data

plications in Genetics and Molecular Biology 4: Article 32. Juliane Schäfer und Korbinian Strimmer. 2005. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764. Juliane Schäfer und Korbinian Strimmer. 2005. Learning large-scale graphical Gaussian models from genomic data. Summary The present work is concerned with modeling and inferring geneti...

متن کامل

Differential network analysis from cross-platform gene expression data

Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different group...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Yue Pan's PhD Thesis

Gene regulatory networks (GRNs) function as the master plan for controlling the expression of genes in living cells. Understanding the interactions between regulatory factors and their target genes in such regulatory networks is a fundamental and challenging problem for experimental and computational biologists. The main goal of this dissertation is to develop novel statistical models and compu...

متن کامل

Defining a robust biological prior from Pathway Analysis to drive Network Inference

Abstract: Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006