Identification of innate immunity elicitors using molecular signatures of natural selection.
نویسندگان
چکیده
The innate immune system is an ancient and broad-spectrum defense system found in all eukaryotes. The detection of microbial elicitors results in the up-regulation of defense-related genes and the elicitation of inflammatory and apoptotic responses. These innate immune responses are the front-line barrier against disease because they collectively suppress the growth of the vast majority of invading microbes. Despite their critical role, we know remarkably little about the diversity of immune elicitors. To address this paucity, we reasoned that hosts are more likely to evolve recognition to "core" pathogen proteins under strong negative selection for the maintenance of essential cellular functions, whereas repeated exposure to host-defense responses will impose strong positive selective pressure for elicitor diversification to avoid host recognition. Therefore, we hypothesized that novel bacterial elicitors can be identified through these opposing forces of natural selection. We tested this hypothesis by examining the genomes of six bacterial phytopathogens and identifying 56 candidate elicitors that have an excess of positively selected residues in a background of strong negative selection. We show that these positively selected residues are atypically clustered, similar to patterns seen in the few well-characterized elicitors. We then validated selected candidate elicitors by showing that they induce Arabidopsis thaliana innate immunity in functional (virulence suppression) and cellular (callose deposition) assays. These finding provide targets for the study of host-pathogen interactions and applied research into alternative antimicrobial treatments.
منابع مشابه
β-glucans and eicosapolyenoic acids as MAMPs in plant–oomycete interactions: past and present
Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels...
متن کاملIdentification of immunogenic microbial patterns takes the fast lane.
I nnate immunity to microbial infection is an inherent feature of all multicellular eukaryotes. In contrast to jawed vertebrates, which, in addition to innate defenses, also possess noninheritable mechanisms of adaptive immunity, antimicrobial defenses of lower metazoans and plants are germline-encoded. Plants use a bipartite immune system to cope with infection (1). The evolutionarily older br...
متن کاملSignatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.
Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of sele...
متن کاملIn silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli
Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...
متن کاملGrowing bacteria shed elicitors of Drosophila humoral immunity.
It has been much debated how the Drosophila immune system can recognize bacterial peptidoglycan that is often hidden. We show that bacteria separated from Drosophila S2 cells by a semipermeable membrane can upregulate the Imd pathway. Supernatants from exponentially growing but not from stationary-phase bacterial cultures induce antimicrobial peptides. It is also made likely that the shed elici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 11 شماره
صفحات -
تاریخ انتشار 2012